Merge pull request #169 from LDLINGLINGLING/main

增加了bnb的量化以及快速导航
This commit is contained in:
LDLINGLINGLING 2024-07-15 15:59:59 +08:00 committed by GitHub
commit 062ab61f61
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
7 changed files with 153 additions and 20 deletions

View File

@ -64,8 +64,8 @@ MiniCPM 是面壁智能与清华大学自然语言处理实验室共同开源的
|-------------|------------|-----------|-----------|
|[Transformers](#Huggingface模型)|[Transformers](#transformer_finetune)|[MLC部署](#MLC)|[GPTQ](#gptq)|
|[vLLM](#vllm-推理)|[mlx_finetune](#mlx)|[llama.cpp](#llama.cpp)|[AWQ](#awq)|
|[llama.cpp](#llama.cpp)|[llama_factory](./finetune/llama_factory_example/README.md)||[困惑度测试](#quantize_test)|
|[ollama](#ollama)||||
|[llama.cpp](#llama.cpp)|[llama_factory](./finetune/llama_factory_example/README.md)||[bnb](#bnb)|
|[ollama](#ollama)|||[量化测试](#quantize_test)|
|[fastllm](#fastllm)||||
|[mlx_lm](#mlx_lm)||||
|[powerinfer](#powerinfer)||||
@ -379,6 +379,35 @@ cd PowerInfer
5. 运行quantize/awq_quantize.py文件,在设置的quan_path目录下可得awq量化后的模型。
<p id="quantize_test"></p>
<p id="bnb"></p>
**bnb量化**
1. 在quantize/bnb_quantize.py 文件中修改根据注释修改配置参数:
```python
model_path = "/root/ld/ld_model_pretrain/MiniCPM-1B-sft-bf16" # 模型地址
save_path = "/root/ld/ld_model_pretrain/MiniCPM-1B-sft-bf16_int4" # 量化模型保存地址
```
2. 更多量化参数可根据注释以及llm.int8()算法进行修改(optional)
```python
quantization_config = BitsAndBytesConfig(
load_in_4bit=True, # 是否进行4bit量化
load_in_8bit=False, # 是否进行8bit量化
bnb_4bit_compute_dtype=torch.float16, # 计算精度设置
bnb_4bit_quant_storage=torch.uint8, # 量化权重的储存格式
bnb_4bit_quant_type="nf4", # 量化格式这里用的是正太分布的int4
bnb_4bit_use_double_quant=True, # 是否采用双量化即对zeropoint和scaling参数进行量化
llm_int8_enable_fp32_cpu_offload=False, # 是否llm使用int8cpu上保存的参数使用fp32
llm_int8_has_fp16_weight=False, # 是否启用混合精度
#llm_int8_skip_modules=["out_proj", "kv_proj", "lm_head"], # 不进行量化的模块
llm_int8_threshold=6.0, # llm.int8()算法中的离群值,根据这个值区分是否进行量化
)
```
3. 运行quantize/bnb_quantize.py文件,在设置的save_path目录下可得bnb量化后的模型。
```python
cd MiniCPM/quantize
python bnb_quantize.py
```
**量化测试**
1. 命令行进入到 MiniCPM/quantize 目录下
2. 修改quantize_eval.sh文件中awq_pathgptq_pathawq_path,如果不需要测试的类型保持为空字符串如下示例表示仅测试awq模型

View File

@ -5,12 +5,12 @@ from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer
import os
model_path = '/root/ld/ld_model_pretrained/MiniCPM-1B-sft-bf16' # model_path or model_id
quant_path = '/root/ld/ld_project/pull_request/MiniCPM/quantize/awq_cpm_1b_4bit' # quant_save_path
quant_data_path='/root/ld/ld_project/pull_request/MiniCPM/quantize/quantize_data/wikitext'# 写入自带数据集地址
model_path = '/root/ld/ld_model_pretrain/MiniCPM-1B-sft-bf16' # model_path or model_id
quant_path = '/root/ld/pull_request/MiniCPM/quantize/awq_cpm_1b_4bit' # quant_save_path
quant_data_path='/root/ld/pull_request/MiniCPM/quantize/quantize_data/wikitext'# 写入自带数据集地址
quant_config = { "zero_point": True, "q_group_size": 128, "w_bit": 4, "version": "GEMM" } # "w_bit":4 or 8
quant_samples=512 # how many samples to use for calibration
custom_data=[{'question':'你叫什么名字。','answer':'我是openmbmb开源的小钢炮minicpm'}, # 自定义数据集可用
custom_data=[{'question':'鼻炎犯了怎么办','answer':'可以使用生理盐水进行清洗'}, # 自定义数据集可用
{'question':'你有什么特色。','answer':'我很小,但是我很强。'}]
# Load model
model = AutoAWQForCausalLM.from_pretrained(model_path)

57
quantize/bnb_quantize.py Normal file
View File

@ -0,0 +1,57 @@
"""
the script will use bitandbytes to quantize the MiniCPM language model.
the be quantized model can be finetuned by MiniCPM or not.
you only need to set the model_path save_path and run bash code
cd MiniCPM
python quantize/bnb_quantize.py
you will get the quantized model in save_pathquantized_model test time and gpu usage
"""
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
import time
import torch
import GPUtil
import os
model_path = "/root/ld/ld_model_pretrain/MiniCPM-1B-sft-bf16" # 模型下载地址
save_path = "/root/ld/ld_model_pretrain/MiniCPM-1B-sft-bf16_int4" # 量化模型保存地址
device = "cuda" if torch.cuda.is_available() else "cpu"
# 创建一个配置对象来指定量化参数
quantization_config = BitsAndBytesConfig(
load_in_4bit=True, # 是否进行4bit量化
load_in_8bit=False, # 是否进行8bit量化
bnb_4bit_compute_dtype=torch.float16, # 计算精度设置
bnb_4bit_quant_storage=torch.uint8, # 量化权重的储存格式
bnb_4bit_quant_type="nf4", # 量化格式这里用的是正太分布的int4
bnb_4bit_use_double_quant=True, # 是否采用双量化即对zeropoint和scaling参数进行量化
llm_int8_enable_fp32_cpu_offload=False, # 是否llm使用int8cpu上保存的参数使用fp32
llm_int8_has_fp16_weight=False, # 是否启用混合精度
#llm_int8_skip_modules=["out_proj", "kv_proj", "lm_head"], # 不进行量化的模块
llm_int8_threshold=6.0, # llm.int8()算法中的离群值,根据这个值区分是否进行量化
)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map=device, # 分配模型到device
quantization_config=quantization_config,
trust_remote_code=True,
)
gpu_usage = GPUtil.getGPUs()[0].memoryUsed
start = time.time()
response = model.chat(tokenizer, "<用户>给我讲一个故事<AI>",history=[], temperature=0.5, top_p=0.8, repetition_penalty=1.02) # 模型推理
print("量化后输出", response)
print("量化后推理用时", time.time() - start)
print(f"量化后显存占用: {round(gpu_usage/1024,2)}GB")
# 保存模型和分词器
os.makedirs(save_path, exist_ok=True)
model.save_pretrained(save_path, safe_serialization=True)
tokenizer.save_pretrained(save_path)

View File

@ -98,8 +98,8 @@ def load_data(data_path, tokenizer, n_samples):
def main():
parser = ArgumentParser()
parser.add_argument("--pretrained_model_dir", type=str,default='/root/ld/ld_model_pretrained/MiniCPM-1B-sft-bf16')
parser.add_argument("--quantized_model_dir", type=str, default='/root/ld/ld_project/AutoGPTQ/examples/quantization/minicpm_1b_4bit')
parser.add_argument("--pretrained_model_dir", type=str,default='/root/ld/ld_model_pretrain/MiniCPM-1B-sft-bf16')
parser.add_argument("--quantized_model_dir", type=str, default='/root/ld/pull_request/MiniCPM/quantize/gptq_cpm_1b_4bit')
parser.add_argument("--bits", type=int, default=4, choices=[2, 3, 4])#do not use 8 bit
parser.add_argument(
"--group_size",

View File

@ -2,7 +2,7 @@ import torch
import torch.nn as nn
from tqdm import tqdm
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import AutoModelForCausalLM, AutoTokenizer,AutoConfig
import GPUtil
import argparse
@ -13,6 +13,12 @@ parser.add_argument(
default='',
help="未量化前的模型路径。"
)
parser.add_argument(
"--bnb_path",
type=str,
default='',
help="bnb量化后的模型路径。"
)
parser.add_argument(
"--awq_path",
type=str,
@ -83,9 +89,9 @@ if __name__ == "__main__":
args = parser.parse_args()
if args.model_path != "":
print("pretrained model",args.model_path.split('/')[-1])
model = AutoModelForCausalLM.from_pretrained(args.model_path, torch_dtype=torch.bfloat16, device_map='cuda', trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(args.model_path)
print("pretrained model",args.model_path.split('/')[-1])
gpu_usage = GPUtil.getGPUs()[0].memoryUsed
print(f"gpu usage: {round(gpu_usage/1024,2)}GB")
evaluate_perplexity(model, tokenizer, args.data_path)
@ -93,10 +99,9 @@ if __name__ == "__main__":
if args.awq_path != "":
from awq import AutoAWQForCausalLM
print("awq model",args.awq_path.split('/')[-1])
model = AutoAWQForCausalLM.from_quantized(args.awq_path, fuse_layers=True,device_map={"":'cuda:0'})
tokenizer = AutoTokenizer.from_pretrained(args.awq_path)
print("awq model",args.awq_path.split('/')[-1])
gpu_usage = GPUtil.getGPUs()[0].memoryUsed
print(f"gpu usage: {round(gpu_usage/1024,2)}GB")
evaluate_perplexity(model, tokenizer, args.data_path)
@ -105,11 +110,23 @@ if __name__ == "__main__":
#we will support the autogptq later
if args.gptq_path != "":
from auto_gptq import AutoGPTQForCausalLM
print("gptq model",args.gptq_path.split('/')[-1])
tokenizer = AutoTokenizer.from_pretrained(args.gptq_path, use_fast=True)
model = AutoGPTQForCausalLM.from_quantized(args.gptq_path, device="cuda:0",trust_remote_code=True)
print("gptq model",args.gptq_path.split('/')[-1])
gpu_usage = GPUtil.getGPUs()[0].memoryUsed
print(f"gpu usage: {round(gpu_usage/1024,2)}GB")
evaluate_perplexity(model, tokenizer, args.data_path)
del model
if args.bnb_path != "":
from accelerate.utils import BnbQuantizationConfig
bnb_quantization_config = BnbQuantizationConfig(load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4")
print("bnb model",args.gptq_path.split('/')[-1])
# config=AutoConfig.from_pretrained(args.bnb_path,trust_remote_code=True)
# bnb_config=config.quantization_config
tokenizer = AutoTokenizer.from_pretrained(args.bnb_path, use_fast=True)
model = AutoModelForCausalLM.from_pretrained(args.bnb_path, trust_remote_code=True,)#quantization_config=bnb_config,)
gpu_usage = GPUtil.getGPUs()[0].memoryUsed
print(f"gpu usage: {round(gpu_usage/1024,2)}GB")
evaluate_perplexity(model, tokenizer, args.data_path)
del model

View File

@ -1,8 +1,8 @@
#!/bin/bash
awq_path="/root/ld/ld_project/AutoAWQ/examples/awq_cpm_1b_4bit"
gptq_path=""
model_path=""
awq_path="/root/ld/pull_request/MiniCPM/quantize/awq_cpm_1b_4bit"
gptq_path="/root/ld/pull_request/MiniCPM/quantize/gptq_cpm_1b_4bit"
model_path="/root/ld/ld_model_pretrain/MiniCPM-1B-sft-bf16"
bnb_path="/root/ld/ld_model_pretrain/MiniCPM-1B-sft-bf16_int4"
python quantize_eval.py --awq_path "${awq_path}" \
--model_path "${model_path}" --gptq_path "${gptq_path}"
--model_path "${model_path}" --gptq_path "${gptq_path}" --bnb_path "${bnb_path}"

View File

@ -45,15 +45,45 @@
```
5. 运行quantize/awq_quantize.py文件,在设置的quan_path目录下可得awq量化后的模型。
<p id="bnb"></p>
**bnb量化**
1. 在quantize/bnb_quantize.py 文件中修改根据注释修改配置参数:
```python
model_path = "/root/ld/ld_model_pretrain/MiniCPM-1B-sft-bf16" # 模型地址
save_path = "/root/ld/ld_model_pretrain/MiniCPM-1B-sft-bf16_int4" # 量化模型保存地址
```
2. 更多量化参数可根据注释以及llm.int8()算法进行修改:
```python
quantization_config = BitsAndBytesConfig(
load_in_4bit=True, # 是否进行4bit量化
load_in_8bit=False, # 是否进行8bit量化
bnb_4bit_compute_dtype=torch.float16, # 计算精度设置
bnb_4bit_quant_storage=torch.uint8, # 量化权重的储存格式
bnb_4bit_quant_type="nf4", # 量化格式这里用的是正太分布的int4
bnb_4bit_use_double_quant=True, # 是否采用双量化即对zeropoint和scaling参数进行量化
llm_int8_enable_fp32_cpu_offload=False, # 是否llm使用int8cpu上保存的参数使用fp32
llm_int8_has_fp16_weight=False, # 是否启用混合精度
#llm_int8_skip_modules=["out_proj", "kv_proj", "lm_head"], # 不进行量化的模块
llm_int8_threshold=6.0, # llm.int8()算法中的离群值,根据这个值区分是否进行量化
)
```
3. 运行quantize/bnb_quantize.py文件,在设置的save_path目录下可得bnb量化后的模型。
```python
cd MiniCPM/quantize
python bnb_quantize.py
```
<p id="quantize_test"></p>
**量化测试**
1. 命令行进入到 MiniCPM/quantize 目录下
2. 修改quantize_eval.sh文件中awq_pathgptq_pathawq_path,如果不需要测试的类型保持为空字符串如下示例表示仅测试awq模型
2. 修改quantize_eval.sh文件中awq_path,gptq_path,awq_path,bnb_path,如果不需要测试的类型保持为空字符串如下示例表示仅测试awq模型
```
awq_path="/root/ld/ld_project/AutoAWQ/examples/awq_cpm_1b_4bit"
gptq_path=""
model_path=""
bnb_path=""
```
3. 在MiniCPM/quantize路径下命令行输入
```