mirror of
https://github.com/RYDE-WORK/MiniCPM.git
synced 2026-02-05 14:43:30 +08:00
commit
062ab61f61
33
README.md
33
README.md
@ -64,8 +64,8 @@ MiniCPM 是面壁智能与清华大学自然语言处理实验室共同开源的
|
|||||||
|-------------|------------|-----------|-----------|
|
|-------------|------------|-----------|-----------|
|
||||||
|[Transformers](#Huggingface模型)|[Transformers](#transformer_finetune)|[MLC部署](#MLC)|[GPTQ](#gptq)|
|
|[Transformers](#Huggingface模型)|[Transformers](#transformer_finetune)|[MLC部署](#MLC)|[GPTQ](#gptq)|
|
||||||
|[vLLM](#vllm-推理)|[mlx_finetune](#mlx)|[llama.cpp](#llama.cpp)|[AWQ](#awq)|
|
|[vLLM](#vllm-推理)|[mlx_finetune](#mlx)|[llama.cpp](#llama.cpp)|[AWQ](#awq)|
|
||||||
|[llama.cpp](#llama.cpp)|[llama_factory](./finetune/llama_factory_example/README.md)||[困惑度测试](#quantize_test)|
|
|[llama.cpp](#llama.cpp)|[llama_factory](./finetune/llama_factory_example/README.md)||[bnb](#bnb)|
|
||||||
|[ollama](#ollama)||||
|
|[ollama](#ollama)|||[量化测试](#quantize_test)|
|
||||||
|[fastllm](#fastllm)||||
|
|[fastllm](#fastllm)||||
|
||||||
|[mlx_lm](#mlx_lm)||||
|
|[mlx_lm](#mlx_lm)||||
|
||||||
|[powerinfer](#powerinfer)||||
|
|[powerinfer](#powerinfer)||||
|
||||||
@ -379,6 +379,35 @@ cd PowerInfer
|
|||||||
5. 运行quantize/awq_quantize.py文件,在设置的quan_path目录下可得awq量化后的模型。
|
5. 运行quantize/awq_quantize.py文件,在设置的quan_path目录下可得awq量化后的模型。
|
||||||
<p id="quantize_test"></p>
|
<p id="quantize_test"></p>
|
||||||
|
|
||||||
|
<p id="bnb"></p>
|
||||||
|
|
||||||
|
**bnb量化**
|
||||||
|
1. 在quantize/bnb_quantize.py 文件中修改根据注释修改配置参数:
|
||||||
|
```python
|
||||||
|
model_path = "/root/ld/ld_model_pretrain/MiniCPM-1B-sft-bf16" # 模型地址
|
||||||
|
save_path = "/root/ld/ld_model_pretrain/MiniCPM-1B-sft-bf16_int4" # 量化模型保存地址
|
||||||
|
```
|
||||||
|
2. 更多量化参数可根据注释以及llm.int8()算法进行修改(optional):
|
||||||
|
```python
|
||||||
|
quantization_config = BitsAndBytesConfig(
|
||||||
|
load_in_4bit=True, # 是否进行4bit量化
|
||||||
|
load_in_8bit=False, # 是否进行8bit量化
|
||||||
|
bnb_4bit_compute_dtype=torch.float16, # 计算精度设置
|
||||||
|
bnb_4bit_quant_storage=torch.uint8, # 量化权重的储存格式
|
||||||
|
bnb_4bit_quant_type="nf4", # 量化格式,这里用的是正太分布的int4
|
||||||
|
bnb_4bit_use_double_quant=True, # 是否采用双量化,即对zeropoint和scaling参数进行量化
|
||||||
|
llm_int8_enable_fp32_cpu_offload=False, # 是否llm使用int8,cpu上保存的参数使用fp32
|
||||||
|
llm_int8_has_fp16_weight=False, # 是否启用混合精度
|
||||||
|
#llm_int8_skip_modules=["out_proj", "kv_proj", "lm_head"], # 不进行量化的模块
|
||||||
|
llm_int8_threshold=6.0, # llm.int8()算法中的离群值,根据这个值区分是否进行量化
|
||||||
|
)
|
||||||
|
```
|
||||||
|
3. 运行quantize/bnb_quantize.py文件,在设置的save_path目录下可得bnb量化后的模型。
|
||||||
|
```python
|
||||||
|
cd MiniCPM/quantize
|
||||||
|
python bnb_quantize.py
|
||||||
|
```
|
||||||
|
|
||||||
**量化测试**
|
**量化测试**
|
||||||
1. 命令行进入到 MiniCPM/quantize 目录下
|
1. 命令行进入到 MiniCPM/quantize 目录下
|
||||||
2. 修改quantize_eval.sh文件中awq_path,gptq_path,awq_path,如果不需要测试的类型保持为空字符串,如下示例表示仅测试awq模型:
|
2. 修改quantize_eval.sh文件中awq_path,gptq_path,awq_path,如果不需要测试的类型保持为空字符串,如下示例表示仅测试awq模型:
|
||||||
|
|||||||
@ -5,12 +5,12 @@ from awq import AutoAWQForCausalLM
|
|||||||
from transformers import AutoTokenizer
|
from transformers import AutoTokenizer
|
||||||
import os
|
import os
|
||||||
|
|
||||||
model_path = '/root/ld/ld_model_pretrained/MiniCPM-1B-sft-bf16' # model_path or model_id
|
model_path = '/root/ld/ld_model_pretrain/MiniCPM-1B-sft-bf16' # model_path or model_id
|
||||||
quant_path = '/root/ld/ld_project/pull_request/MiniCPM/quantize/awq_cpm_1b_4bit' # quant_save_path
|
quant_path = '/root/ld/pull_request/MiniCPM/quantize/awq_cpm_1b_4bit' # quant_save_path
|
||||||
quant_data_path='/root/ld/ld_project/pull_request/MiniCPM/quantize/quantize_data/wikitext'# 写入自带数据集地址
|
quant_data_path='/root/ld/pull_request/MiniCPM/quantize/quantize_data/wikitext'# 写入自带数据集地址
|
||||||
quant_config = { "zero_point": True, "q_group_size": 128, "w_bit": 4, "version": "GEMM" } # "w_bit":4 or 8
|
quant_config = { "zero_point": True, "q_group_size": 128, "w_bit": 4, "version": "GEMM" } # "w_bit":4 or 8
|
||||||
quant_samples=512 # how many samples to use for calibration
|
quant_samples=512 # how many samples to use for calibration
|
||||||
custom_data=[{'question':'你叫什么名字。','answer':'我是openmbmb开源的小钢炮minicpm。'}, # 自定义数据集可用
|
custom_data=[{'question':'鼻炎犯了怎么办','answer':'可以使用生理盐水进行清洗。'}, # 自定义数据集可用
|
||||||
{'question':'你有什么特色。','answer':'我很小,但是我很强。'}]
|
{'question':'你有什么特色。','answer':'我很小,但是我很强。'}]
|
||||||
# Load model
|
# Load model
|
||||||
model = AutoAWQForCausalLM.from_pretrained(model_path)
|
model = AutoAWQForCausalLM.from_pretrained(model_path)
|
||||||
|
|||||||
57
quantize/bnb_quantize.py
Normal file
57
quantize/bnb_quantize.py
Normal file
@ -0,0 +1,57 @@
|
|||||||
|
"""
|
||||||
|
the script will use bitandbytes to quantize the MiniCPM language model.
|
||||||
|
the be quantized model can be finetuned by MiniCPM or not.
|
||||||
|
you only need to set the model_path 、save_path and run bash code
|
||||||
|
|
||||||
|
cd MiniCPM
|
||||||
|
python quantize/bnb_quantize.py
|
||||||
|
|
||||||
|
you will get the quantized model in save_path、quantized_model test time and gpu usage
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
||||||
|
import time
|
||||||
|
import torch
|
||||||
|
import GPUtil
|
||||||
|
import os
|
||||||
|
|
||||||
|
model_path = "/root/ld/ld_model_pretrain/MiniCPM-1B-sft-bf16" # 模型下载地址
|
||||||
|
save_path = "/root/ld/ld_model_pretrain/MiniCPM-1B-sft-bf16_int4" # 量化模型保存地址
|
||||||
|
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||||
|
|
||||||
|
# 创建一个配置对象来指定量化参数
|
||||||
|
quantization_config = BitsAndBytesConfig(
|
||||||
|
load_in_4bit=True, # 是否进行4bit量化
|
||||||
|
load_in_8bit=False, # 是否进行8bit量化
|
||||||
|
bnb_4bit_compute_dtype=torch.float16, # 计算精度设置
|
||||||
|
bnb_4bit_quant_storage=torch.uint8, # 量化权重的储存格式
|
||||||
|
bnb_4bit_quant_type="nf4", # 量化格式,这里用的是正太分布的int4
|
||||||
|
bnb_4bit_use_double_quant=True, # 是否采用双量化,即对zeropoint和scaling参数进行量化
|
||||||
|
llm_int8_enable_fp32_cpu_offload=False, # 是否llm使用int8,cpu上保存的参数使用fp32
|
||||||
|
llm_int8_has_fp16_weight=False, # 是否启用混合精度
|
||||||
|
#llm_int8_skip_modules=["out_proj", "kv_proj", "lm_head"], # 不进行量化的模块
|
||||||
|
llm_int8_threshold=6.0, # llm.int8()算法中的离群值,根据这个值区分是否进行量化
|
||||||
|
)
|
||||||
|
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||||
|
model = AutoModelForCausalLM.from_pretrained(
|
||||||
|
model_path,
|
||||||
|
device_map=device, # 分配模型到device
|
||||||
|
quantization_config=quantization_config,
|
||||||
|
trust_remote_code=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
gpu_usage = GPUtil.getGPUs()[0].memoryUsed
|
||||||
|
start = time.time()
|
||||||
|
response = model.chat(tokenizer, "<用户>给我讲一个故事<AI>",history=[], temperature=0.5, top_p=0.8, repetition_penalty=1.02) # 模型推理
|
||||||
|
print("量化后输出", response)
|
||||||
|
print("量化后推理用时", time.time() - start)
|
||||||
|
print(f"量化后显存占用: {round(gpu_usage/1024,2)}GB")
|
||||||
|
|
||||||
|
|
||||||
|
# 保存模型和分词器
|
||||||
|
os.makedirs(save_path, exist_ok=True)
|
||||||
|
model.save_pretrained(save_path, safe_serialization=True)
|
||||||
|
tokenizer.save_pretrained(save_path)
|
||||||
@ -98,8 +98,8 @@ def load_data(data_path, tokenizer, n_samples):
|
|||||||
|
|
||||||
def main():
|
def main():
|
||||||
parser = ArgumentParser()
|
parser = ArgumentParser()
|
||||||
parser.add_argument("--pretrained_model_dir", type=str,default='/root/ld/ld_model_pretrained/MiniCPM-1B-sft-bf16')
|
parser.add_argument("--pretrained_model_dir", type=str,default='/root/ld/ld_model_pretrain/MiniCPM-1B-sft-bf16')
|
||||||
parser.add_argument("--quantized_model_dir", type=str, default='/root/ld/ld_project/AutoGPTQ/examples/quantization/minicpm_1b_4bit')
|
parser.add_argument("--quantized_model_dir", type=str, default='/root/ld/pull_request/MiniCPM/quantize/gptq_cpm_1b_4bit')
|
||||||
parser.add_argument("--bits", type=int, default=4, choices=[2, 3, 4])#do not use 8 bit
|
parser.add_argument("--bits", type=int, default=4, choices=[2, 3, 4])#do not use 8 bit
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--group_size",
|
"--group_size",
|
||||||
|
|||||||
@ -2,7 +2,7 @@ import torch
|
|||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
from datasets import load_dataset
|
from datasets import load_dataset
|
||||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
from transformers import AutoModelForCausalLM, AutoTokenizer,AutoConfig
|
||||||
import GPUtil
|
import GPUtil
|
||||||
import argparse
|
import argparse
|
||||||
|
|
||||||
@ -13,6 +13,12 @@ parser.add_argument(
|
|||||||
default='',
|
default='',
|
||||||
help="未量化前的模型路径。"
|
help="未量化前的模型路径。"
|
||||||
)
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--bnb_path",
|
||||||
|
type=str,
|
||||||
|
default='',
|
||||||
|
help="bnb量化后的模型路径。"
|
||||||
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--awq_path",
|
"--awq_path",
|
||||||
type=str,
|
type=str,
|
||||||
@ -83,9 +89,9 @@ if __name__ == "__main__":
|
|||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
if args.model_path != "":
|
if args.model_path != "":
|
||||||
|
print("pretrained model:",args.model_path.split('/')[-1])
|
||||||
model = AutoModelForCausalLM.from_pretrained(args.model_path, torch_dtype=torch.bfloat16, device_map='cuda', trust_remote_code=True)
|
model = AutoModelForCausalLM.from_pretrained(args.model_path, torch_dtype=torch.bfloat16, device_map='cuda', trust_remote_code=True)
|
||||||
tokenizer = AutoTokenizer.from_pretrained(args.model_path)
|
tokenizer = AutoTokenizer.from_pretrained(args.model_path)
|
||||||
print("pretrained model:",args.model_path.split('/')[-1])
|
|
||||||
gpu_usage = GPUtil.getGPUs()[0].memoryUsed
|
gpu_usage = GPUtil.getGPUs()[0].memoryUsed
|
||||||
print(f"gpu usage: {round(gpu_usage/1024,2)}GB")
|
print(f"gpu usage: {round(gpu_usage/1024,2)}GB")
|
||||||
evaluate_perplexity(model, tokenizer, args.data_path)
|
evaluate_perplexity(model, tokenizer, args.data_path)
|
||||||
@ -93,10 +99,9 @@ if __name__ == "__main__":
|
|||||||
|
|
||||||
if args.awq_path != "":
|
if args.awq_path != "":
|
||||||
from awq import AutoAWQForCausalLM
|
from awq import AutoAWQForCausalLM
|
||||||
|
print("awq model:",args.awq_path.split('/')[-1])
|
||||||
model = AutoAWQForCausalLM.from_quantized(args.awq_path, fuse_layers=True,device_map={"":'cuda:0'})
|
model = AutoAWQForCausalLM.from_quantized(args.awq_path, fuse_layers=True,device_map={"":'cuda:0'})
|
||||||
tokenizer = AutoTokenizer.from_pretrained(args.awq_path)
|
tokenizer = AutoTokenizer.from_pretrained(args.awq_path)
|
||||||
print("awq model:",args.awq_path.split('/')[-1])
|
|
||||||
gpu_usage = GPUtil.getGPUs()[0].memoryUsed
|
gpu_usage = GPUtil.getGPUs()[0].memoryUsed
|
||||||
print(f"gpu usage: {round(gpu_usage/1024,2)}GB")
|
print(f"gpu usage: {round(gpu_usage/1024,2)}GB")
|
||||||
evaluate_perplexity(model, tokenizer, args.data_path)
|
evaluate_perplexity(model, tokenizer, args.data_path)
|
||||||
@ -105,11 +110,23 @@ if __name__ == "__main__":
|
|||||||
#we will support the autogptq later
|
#we will support the autogptq later
|
||||||
if args.gptq_path != "":
|
if args.gptq_path != "":
|
||||||
from auto_gptq import AutoGPTQForCausalLM
|
from auto_gptq import AutoGPTQForCausalLM
|
||||||
|
print("gptq model:",args.gptq_path.split('/')[-1])
|
||||||
tokenizer = AutoTokenizer.from_pretrained(args.gptq_path, use_fast=True)
|
tokenizer = AutoTokenizer.from_pretrained(args.gptq_path, use_fast=True)
|
||||||
model = AutoGPTQForCausalLM.from_quantized(args.gptq_path, device="cuda:0",trust_remote_code=True)
|
model = AutoGPTQForCausalLM.from_quantized(args.gptq_path, device="cuda:0",trust_remote_code=True)
|
||||||
print("gptq model:",args.gptq_path.split('/')[-1])
|
|
||||||
gpu_usage = GPUtil.getGPUs()[0].memoryUsed
|
gpu_usage = GPUtil.getGPUs()[0].memoryUsed
|
||||||
print(f"gpu usage: {round(gpu_usage/1024,2)}GB")
|
print(f"gpu usage: {round(gpu_usage/1024,2)}GB")
|
||||||
evaluate_perplexity(model, tokenizer, args.data_path)
|
evaluate_perplexity(model, tokenizer, args.data_path)
|
||||||
|
del model
|
||||||
|
|
||||||
|
if args.bnb_path != "":
|
||||||
|
from accelerate.utils import BnbQuantizationConfig
|
||||||
|
bnb_quantization_config = BnbQuantizationConfig(load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4")
|
||||||
|
print("bnb model:",args.gptq_path.split('/')[-1])
|
||||||
|
# config=AutoConfig.from_pretrained(args.bnb_path,trust_remote_code=True)
|
||||||
|
# bnb_config=config.quantization_config
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(args.bnb_path, use_fast=True)
|
||||||
|
model = AutoModelForCausalLM.from_pretrained(args.bnb_path, trust_remote_code=True,)#quantization_config=bnb_config,)
|
||||||
|
gpu_usage = GPUtil.getGPUs()[0].memoryUsed
|
||||||
|
print(f"gpu usage: {round(gpu_usage/1024,2)}GB")
|
||||||
|
evaluate_perplexity(model, tokenizer, args.data_path)
|
||||||
|
del model
|
||||||
|
|||||||
@ -1,8 +1,8 @@
|
|||||||
#!/bin/bash
|
#!/bin/bash
|
||||||
|
|
||||||
awq_path="/root/ld/ld_project/AutoAWQ/examples/awq_cpm_1b_4bit"
|
awq_path="/root/ld/pull_request/MiniCPM/quantize/awq_cpm_1b_4bit"
|
||||||
gptq_path=""
|
gptq_path="/root/ld/pull_request/MiniCPM/quantize/gptq_cpm_1b_4bit"
|
||||||
model_path=""
|
model_path="/root/ld/ld_model_pretrain/MiniCPM-1B-sft-bf16"
|
||||||
|
bnb_path="/root/ld/ld_model_pretrain/MiniCPM-1B-sft-bf16_int4"
|
||||||
python quantize_eval.py --awq_path "${awq_path}" \
|
python quantize_eval.py --awq_path "${awq_path}" \
|
||||||
--model_path "${model_path}" --gptq_path "${gptq_path}"
|
--model_path "${model_path}" --gptq_path "${gptq_path}" --bnb_path "${bnb_path}"
|
||||||
@ -45,15 +45,45 @@
|
|||||||
|
|
||||||
```
|
```
|
||||||
5. 运行quantize/awq_quantize.py文件,在设置的quan_path目录下可得awq量化后的模型。
|
5. 运行quantize/awq_quantize.py文件,在设置的quan_path目录下可得awq量化后的模型。
|
||||||
|
|
||||||
|
<p id="bnb"></p>
|
||||||
|
|
||||||
|
**bnb量化**
|
||||||
|
1. 在quantize/bnb_quantize.py 文件中修改根据注释修改配置参数:
|
||||||
|
```python
|
||||||
|
model_path = "/root/ld/ld_model_pretrain/MiniCPM-1B-sft-bf16" # 模型地址
|
||||||
|
save_path = "/root/ld/ld_model_pretrain/MiniCPM-1B-sft-bf16_int4" # 量化模型保存地址
|
||||||
|
```
|
||||||
|
2. 更多量化参数可根据注释以及llm.int8()算法进行修改:
|
||||||
|
```python
|
||||||
|
quantization_config = BitsAndBytesConfig(
|
||||||
|
load_in_4bit=True, # 是否进行4bit量化
|
||||||
|
load_in_8bit=False, # 是否进行8bit量化
|
||||||
|
bnb_4bit_compute_dtype=torch.float16, # 计算精度设置
|
||||||
|
bnb_4bit_quant_storage=torch.uint8, # 量化权重的储存格式
|
||||||
|
bnb_4bit_quant_type="nf4", # 量化格式,这里用的是正太分布的int4
|
||||||
|
bnb_4bit_use_double_quant=True, # 是否采用双量化,即对zeropoint和scaling参数进行量化
|
||||||
|
llm_int8_enable_fp32_cpu_offload=False, # 是否llm使用int8,cpu上保存的参数使用fp32
|
||||||
|
llm_int8_has_fp16_weight=False, # 是否启用混合精度
|
||||||
|
#llm_int8_skip_modules=["out_proj", "kv_proj", "lm_head"], # 不进行量化的模块
|
||||||
|
llm_int8_threshold=6.0, # llm.int8()算法中的离群值,根据这个值区分是否进行量化
|
||||||
|
)
|
||||||
|
```
|
||||||
|
3. 运行quantize/bnb_quantize.py文件,在设置的save_path目录下可得bnb量化后的模型。
|
||||||
|
```python
|
||||||
|
cd MiniCPM/quantize
|
||||||
|
python bnb_quantize.py
|
||||||
|
```
|
||||||
<p id="quantize_test"></p>
|
<p id="quantize_test"></p>
|
||||||
|
|
||||||
**量化测试**
|
**量化测试**
|
||||||
1. 命令行进入到 MiniCPM/quantize 目录下
|
1. 命令行进入到 MiniCPM/quantize 目录下
|
||||||
2. 修改quantize_eval.sh文件中awq_path,gptq_path,awq_path,如果不需要测试的类型保持为空字符串,如下示例表示仅测试awq模型:
|
2. 修改quantize_eval.sh文件中awq_path,gptq_path,awq_path,bnb_path,如果不需要测试的类型保持为空字符串,如下示例表示仅测试awq模型:
|
||||||
```
|
```
|
||||||
awq_path="/root/ld/ld_project/AutoAWQ/examples/awq_cpm_1b_4bit"
|
awq_path="/root/ld/ld_project/AutoAWQ/examples/awq_cpm_1b_4bit"
|
||||||
gptq_path=""
|
gptq_path=""
|
||||||
model_path=""
|
model_path=""
|
||||||
|
bnb_path=""
|
||||||
```
|
```
|
||||||
3. 在MiniCPM/quantize路径下命令行输入:
|
3. 在MiniCPM/quantize路径下命令行输入:
|
||||||
```
|
```
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user