mirror of
https://github.com/RYDE-WORK/Langchain-Chatchat.git
synced 2026-01-21 14:23:33 +08:00
* 优化configs (#1474) * remove llm_model_dict * optimize configs * fix get_model_path * 更改一些默认参数,添加千帆的默认配置 * Update server_config.py.example * fix merge conflict for #1474 (#1494) * 修复ChatGPT api_base_url错误;用户可以在model_config在线模型配置中覆盖默认的api_base_url (#1496) * 优化LLM模型列表获取、切换的逻辑: (#1497) 1、更准确的获取未运行的可用模型 2、优化WEBUI模型列表显示与切换的控制逻辑 * 更新migrate.py和init_database.py,加强知识库迁移工具: (#1498) 1. 添加--update-in-db参数,按照数据库信息,从本地文件更新向量库 2. 添加--increament参数,根据本地文件增量更新向量库 3. 添加--prune-db参数,删除本地文件后,自动清理相关的向量库 4. 添加--prune-folder参数,根据数据库信息,清理无用的本地文件 5. 取消--update-info-only参数。数据库中存储了向量库信息,该操作意义不大 6. 添加--kb-name参数,所有操作支持指定操作的知识库,不指定则为所有本地知识库 7. 添加知识库迁移的测试用例 8. 删除milvus_kb_service的save_vector_store方法 * feat: support volc fangzhou * 使火山方舟正常工作,添加错误处理和测试用例 * feat: support volc fangzhou (#1501) * feat: support volc fangzhou --------- Co-authored-by: liunux4odoo <41217877+liunux4odoo@users.noreply.github.com> Co-authored-by: liqiankun.1111 <liqiankun.1111@bytedance.com> * 第一版初步agent实现 (#1503) * 第一版初步agent实现 * 增加steaming参数 * 修改了weather.py --------- Co-authored-by: zR <zRzRzRzRzRzRzR> * 添加configs/prompt_config.py,允许用户自定义prompt模板: (#1504) 1、 默认包含2个模板,分别用于LLM对话,知识库和搜索引擎对话 2、 server/utils.py提供函数get_prompt_template,获取指定的prompt模板内容(支持热加载) 3、 api.py中chat/knowledge_base_chat/search_engine_chat接口支持prompt_name参数 * 增加其它模型的参数适配 * 增加传入矢量名称加载 * 1. 搜索引擎问答支持历史记录; 2. 修复知识库问答历史记录传参错误:用户输入被传入history,问题出在webui中重复获取历史消息,api知识库对话接口并无问题。 * langchain日志开关 * move wrap_done & get_ChatOpenAI from server.chat.utils to server.utils (#1506) * 修复faiss_pool知识库缓存key错误 (#1507) * fix ReadMe anchor link (#1500) * fix : Duplicate variable and function name (#1509) Co-authored-by: Jim <zhangpengyi@taijihuabao.com> * Update README.md * fix #1519: streamlit-chatbox旧版BUG,但新版有兼容问题,先在webui中作处理,并限定chatbox版本 (#1525) close #1519 * 【功能新增】在线 LLM 模型支持阿里云通义千问 (#1534) * feat: add qwen-api * 使Qwen API支持temperature参数;添加测试用例 * 将online-api的sdk列为可选依赖 --------- Co-authored-by: liunux4odoo <liunux@qq.com> * 处理序列化至磁盘的逻辑 * remove depends on volcengine * update kb_doc_api: use Form instead of Body when upload file * 将所有httpx请求改为使用Client,提高效率,方便以后设置代理等。 (#1554) 将所有httpx请求改为使用Client,提高效率,方便以后设置代理等。 将本项目相关服务加入无代理列表,避免fastchat的服务器请求错误。(windows下无效) * update QR code * update readme_en,readme,requirements_api,requirements,model_config.py.example:测试baichuan2-7b;更新相关文档 * 新增特性:1.支持vllm推理加速框架;2. 更新支持模型列表 * 更新文件:1. startup,model_config.py.example,serve_config.py.example,FAQ * 1. debug vllm加速框架完毕;2. 修改requirements,requirements_api对vllm的依赖;3.注释掉serve_config中baichuan-7b的device为cpu的配置 * 1. 更新congif中关于vllm后端相关说明;2. 更新requirements,requirements_api; * 增加了仅限GPT4的agent功能,陆续补充,中文版readme已写 (#1611) * Dev (#1613) * 增加了仅限GPT4的agent功能,陆续补充,中文版readme已写 * issue提到的一个bug * 温度最小改成0,但是不应该支持负数 * 修改了最小的温度 * fix: set vllm based on platform to avoid error on windows * fix: langchain warnings for import from root * 修复webui中重建知识库以及对话界面UI错误 (#1615) * 修复bug:webui点重建知识库时,如果存在不支持的文件会导致整个接口错误;migrate中没有导入CHUNK_SIZE * 修复:webui对话界面的expander一直为running状态;简化历史消息获取方法 * 根据官方文档,添加对英文版的bge embedding的指示模板 (#1585) Co-authored-by: zR <2448370773@qq.com> * Dev (#1618) * 增加了仅限GPT4的agent功能,陆续补充,中文版readme已写 * issue提到的一个bug * 温度最小改成0,但是不应该支持负数 * 修改了最小的温度 * 增加了部分Agent支持和修改了启动文件的部分bug * 修改了GPU数量配置文件 * 1 1 * 修复配置文件错误 * 更新readme,稳定测试 * 更改readme 0928 (#1619) * 增加了仅限GPT4的agent功能,陆续补充,中文版readme已写 * issue提到的一个bug * 温度最小改成0,但是不应该支持负数 * 修改了最小的温度 * 增加了部分Agent支持和修改了启动文件的部分bug * 修改了GPU数量配置文件 * 1 1 * 修复配置文件错误 * 更新readme,稳定测试 * 更新readme * fix readme * 处理序列化至磁盘的逻辑 * update version number to v0.2.5 --------- Co-authored-by: qiankunli <qiankun.li@qq.com> Co-authored-by: liqiankun.1111 <liqiankun.1111@bytedance.com> Co-authored-by: zR <2448370773@qq.com> Co-authored-by: glide-the <2533736852@qq.com> Co-authored-by: Water Zheng <1499383852@qq.com> Co-authored-by: Jim Zhang <dividi_z@163.com> Co-authored-by: Jim <zhangpengyi@taijihuabao.com> Co-authored-by: imClumsyPanda <littlepanda0716@gmail.com> Co-authored-by: Leego <leegodev@hotmail.com> Co-authored-by: hzg0601 <hzg0601@163.com> Co-authored-by: WilliamChen-luckbob <58684828+WilliamChen-luckbob@users.noreply.github.com>
159 lines
5.7 KiB
Python
159 lines
5.7 KiB
Python
from server.knowledge_base.kb_cache.base import *
|
|
from server.knowledge_base.utils import get_vs_path
|
|
from langchain.vectorstores import FAISS
|
|
import os
|
|
|
|
|
|
class ThreadSafeFaiss(ThreadSafeObject):
|
|
def __repr__(self) -> str:
|
|
cls = type(self).__name__
|
|
return f"<{cls}: key: {self.key}, obj: {self._obj}, docs_count: {self.docs_count()}>"
|
|
|
|
def docs_count(self) -> int:
|
|
return len(self._obj.docstore._dict)
|
|
|
|
def save(self, path: str, create_path: bool = True):
|
|
with self.acquire():
|
|
if not os.path.isdir(path) and create_path:
|
|
os.makedirs(path)
|
|
ret = self._obj.save_local(path)
|
|
logger.info(f"已将向量库 {self.key} 保存到磁盘")
|
|
return ret
|
|
|
|
def clear(self):
|
|
ret = []
|
|
with self.acquire():
|
|
ids = list(self._obj.docstore._dict.keys())
|
|
if ids:
|
|
ret = self._obj.delete(ids)
|
|
assert len(self._obj.docstore._dict) == 0
|
|
logger.info(f"已将向量库 {self.key} 清空")
|
|
return ret
|
|
|
|
|
|
class _FaissPool(CachePool):
|
|
def new_vector_store(
|
|
self,
|
|
embed_model: str = EMBEDDING_MODEL,
|
|
embed_device: str = embedding_device(),
|
|
) -> FAISS:
|
|
embeddings = embeddings_pool.load_embeddings(embed_model, embed_device)
|
|
|
|
# create an empty vector store
|
|
doc = Document(page_content="init", metadata={})
|
|
vector_store = FAISS.from_documents([doc], embeddings, normalize_L2=True)
|
|
ids = list(vector_store.docstore._dict.keys())
|
|
vector_store.delete(ids)
|
|
return vector_store
|
|
|
|
def save_vector_store(self, kb_name: str, path: str=None):
|
|
if cache := self.get(kb_name):
|
|
return cache.save(path)
|
|
|
|
def unload_vector_store(self, kb_name: str):
|
|
if cache := self.get(kb_name):
|
|
self.pop(kb_name)
|
|
logger.info(f"成功释放向量库:{kb_name}")
|
|
|
|
|
|
class KBFaissPool(_FaissPool):
|
|
def load_vector_store(
|
|
self,
|
|
kb_name: str,
|
|
vector_name: str = "vector_store",
|
|
create: bool = True,
|
|
embed_model: str = EMBEDDING_MODEL,
|
|
embed_device: str = embedding_device(),
|
|
) -> ThreadSafeFaiss:
|
|
self.atomic.acquire()
|
|
cache = self.get((kb_name, vector_name)) # 用元组比拼接字符串好一些
|
|
if cache is None:
|
|
item = ThreadSafeFaiss((kb_name, vector_name), pool=self)
|
|
self.set((kb_name, vector_name), item)
|
|
with item.acquire(msg="初始化"):
|
|
self.atomic.release()
|
|
logger.info(f"loading vector store in '{kb_name}/{vector_name}' from disk.")
|
|
vs_path = get_vs_path(kb_name, vector_name)
|
|
|
|
if os.path.isfile(os.path.join(vs_path, "index.faiss")):
|
|
embeddings = self.load_kb_embeddings(kb_name=kb_name, embed_device=embed_device)
|
|
vector_store = FAISS.load_local(vs_path, embeddings, normalize_L2=True)
|
|
elif create:
|
|
# create an empty vector store
|
|
if not os.path.exists(vs_path):
|
|
os.makedirs(vs_path)
|
|
vector_store = self.new_vector_store(embed_model=embed_model, embed_device=embed_device)
|
|
vector_store.save_local(vs_path)
|
|
else:
|
|
raise RuntimeError(f"knowledge base {kb_name} not exist.")
|
|
item.obj = vector_store
|
|
item.finish_loading()
|
|
else:
|
|
self.atomic.release()
|
|
return self.get((kb_name, vector_name))
|
|
|
|
|
|
class MemoFaissPool(_FaissPool):
|
|
def load_vector_store(
|
|
self,
|
|
kb_name: str,
|
|
embed_model: str = EMBEDDING_MODEL,
|
|
embed_device: str = embedding_device(),
|
|
) -> ThreadSafeFaiss:
|
|
self.atomic.acquire()
|
|
cache = self.get(kb_name)
|
|
if cache is None:
|
|
item = ThreadSafeFaiss(kb_name, pool=self)
|
|
self.set(kb_name, item)
|
|
with item.acquire(msg="初始化"):
|
|
self.atomic.release()
|
|
logger.info(f"loading vector store in '{kb_name}' to memory.")
|
|
# create an empty vector store
|
|
vector_store = self.new_vector_store(embed_model=embed_model, embed_device=embed_device)
|
|
item.obj = vector_store
|
|
item.finish_loading()
|
|
else:
|
|
self.atomic.release()
|
|
return self.get(kb_name)
|
|
|
|
|
|
kb_faiss_pool = KBFaissPool(cache_num=CACHED_VS_NUM)
|
|
memo_faiss_pool = MemoFaissPool()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import time, random
|
|
from pprint import pprint
|
|
|
|
kb_names = ["vs1", "vs2", "vs3"]
|
|
# for name in kb_names:
|
|
# memo_faiss_pool.load_vector_store(name)
|
|
|
|
def worker(vs_name: str, name: str):
|
|
vs_name = "samples"
|
|
time.sleep(random.randint(1, 5))
|
|
embeddings = embeddings_pool.load_embeddings()
|
|
r = random.randint(1, 3)
|
|
|
|
with kb_faiss_pool.load_vector_store(vs_name).acquire(name) as vs:
|
|
if r == 1: # add docs
|
|
ids = vs.add_texts([f"text added by {name}"], embeddings=embeddings)
|
|
pprint(ids)
|
|
elif r == 2: # search docs
|
|
docs = vs.similarity_search_with_score(f"{name}", top_k=3, score_threshold=1.0)
|
|
pprint(docs)
|
|
if r == 3: # delete docs
|
|
logger.warning(f"清除 {vs_name} by {name}")
|
|
kb_faiss_pool.get(vs_name).clear()
|
|
|
|
threads = []
|
|
for n in range(1, 30):
|
|
t = threading.Thread(target=worker,
|
|
kwargs={"vs_name": random.choice(kb_names), "name": f"worker {n}"},
|
|
daemon=True)
|
|
t.start()
|
|
threads.append(t)
|
|
|
|
for t in threads:
|
|
t.join()
|