liunux4odoo 9ff7bef2c2
新功能:知识库管理界面支持查看、编辑、删除向量库文档 (#2471)
* 新功能:
- 知识库管理界面支持查看、编辑、删除向量库文档。暂不支持增加(aggrid添加新行比较麻烦,需要另外实现)
- 去除知识库管理界面中重建知识库和删除知识库按钮,建议用户到终端命令操作

修复:
- 所有与知识库名称、文件名称有关的数据库操作函数都改成大小写不敏感,所有路径统一为 posix 风格,避免因路径文本不一致导致数据重复和操作失效 (close #2232)

开发者:
- 添加 update_docs_by_id 函数与 API 接口。当前仅支持 FAISS,暂时未用到,未将来对知识库做更细致的修改做准备
- 统一 DocumentWithScore 与 DocumentWithVsId
- FAISS 返回的 Document.metadata 中包含 ID, 方便后续查找比对
- /knowledge_base/search_docs 接口支持 file_name, metadata 参数,可以据此检索文档

* fix bug
2023-12-26 13:44:36 +08:00

114 lines
4.1 KiB
Python

from typing import List, Dict, Optional
from langchain.schema import Document
from langchain.vectorstores.milvus import Milvus
from configs import kbs_config
from server.knowledge_base.kb_service.base import KBService, SupportedVSType, EmbeddingsFunAdapter, \
score_threshold_process
from server.knowledge_base.utils import KnowledgeFile
class MilvusKBService(KBService):
milvus: Milvus
@staticmethod
def get_collection(milvus_name):
from pymilvus import Collection
return Collection(milvus_name)
# def save_vector_store(self):
# if self.milvus.col:
# self.milvus.col.flush()
def get_doc_by_ids(self, ids: List[str]) -> List[Document]:
result = []
if self.milvus.col:
data_list = self.milvus.col.query(expr=f'pk in {ids}', output_fields=["*"])
for data in data_list:
text = data.pop("text")
result.append(Document(page_content=text, metadata=data))
return result
def del_doc_by_ids(self, ids: List[str]) -> bool:
self.milvus.col.delete(expr=f'pk in {ids}')
@staticmethod
def search(milvus_name, content, limit=3):
search_params = {
"metric_type": "L2",
"params": {"nprobe": 10},
}
c = MilvusKBService.get_collection(milvus_name)
return c.search(content, "embeddings", search_params, limit=limit, output_fields=["content"])
def do_create_kb(self):
pass
def vs_type(self) -> str:
return SupportedVSType.MILVUS
def _load_milvus(self):
self.milvus = Milvus(embedding_function=EmbeddingsFunAdapter(self.embed_model),
collection_name=self.kb_name,
connection_args=kbs_config.get("milvus"),
index_params=kbs_config.ge("milvus_kwargs")["index_params"],
search_params=kbs_config.get("milvus_kwargs")["search_params"]
)
def do_init(self):
self._load_milvus()
def do_drop_kb(self):
if self.milvus.col:
self.milvus.col.release()
self.milvus.col.drop()
def do_search(self, query: str, top_k: int, score_threshold: float):
self._load_milvus()
embed_func = EmbeddingsFunAdapter(self.embed_model)
embeddings = embed_func.embed_query(query)
docs = self.milvus.similarity_search_with_score_by_vector(embeddings, top_k)
return score_threshold_process(score_threshold, top_k, docs)
def do_add_doc(self, docs: List[Document], **kwargs) -> List[Dict]:
# TODO: workaround for bug #10492 in langchain
for doc in docs:
for k, v in doc.metadata.items():
doc.metadata[k] = str(v)
for field in self.milvus.fields:
doc.metadata.setdefault(field, "")
doc.metadata.pop(self.milvus._text_field, None)
doc.metadata.pop(self.milvus._vector_field, None)
ids = self.milvus.add_documents(docs)
doc_infos = [{"id": id, "metadata": doc.metadata} for id, doc in zip(ids, docs)]
return doc_infos
def do_delete_doc(self, kb_file: KnowledgeFile, **kwargs):
if self.milvus.col:
filepath = kb_file.filepath.replace('\\', '\\\\')
delete_list = [item.get("pk") for item in
self.milvus.col.query(expr=f'source == "{filepath}"', output_fields=["pk"])]
self.milvus.col.delete(expr=f'pk in {delete_list}')
def do_clear_vs(self):
if self.milvus.col:
self.do_drop_kb()
self.do_init()
if __name__ == '__main__':
# 测试建表使用
from server.db.base import Base, engine
Base.metadata.create_all(bind=engine)
milvusService = MilvusKBService("test")
# milvusService.add_doc(KnowledgeFile("README.md", "test"))
print(milvusService.get_doc_by_ids(["444022434274215486"]))
# milvusService.delete_doc(KnowledgeFile("README.md", "test"))
# milvusService.do_drop_kb()
# print(milvusService.search_docs("如何启动api服务"))