liunux4odoo d0846f88cc - pydantic 限定为 v1,并统一项目中所有 pydantic 导入路径,为以后升级 v2 做准备
- 重构 api.py:
    - 按模块划分为不同的 router
    - 添加 openai 兼容的转发接口,项目默认使用该接口以实现模型负载均衡
    - 添加 /tools 接口,可以获取/调用编写的 agent tools
    - 移除所有 EmbeddingFuncAdapter,统一改用 get_Embeddings
    - 待办:
        - /chat/chat 接口改为 openai 兼容
        - 添加 /chat/kb_chat 接口,openai 兼容
        - 改变 ntlk/knowledge_base/logs 等数据目录位置
2024-03-06 13:51:34 +08:00

99 lines
3.5 KiB
Python

from typing import List, Dict, Optional
from langchain.embeddings.base import Embeddings
from langchain.schema import Document
from langchain.vectorstores import Zilliz
from configs import kbs_config
from server.knowledge_base.kb_service.base import KBService, SupportedVSType, \
score_threshold_process
from server.knowledge_base.utils import KnowledgeFile
from server.utils import get_Embeddings
class ZillizKBService(KBService):
zilliz: Zilliz
@staticmethod
def get_collection(zilliz_name):
from pymilvus import Collection
return Collection(zilliz_name)
def get_doc_by_ids(self, ids: List[str]) -> List[Document]:
result = []
if self.zilliz.col:
# ids = [int(id) for id in ids] # for zilliz if needed #pr 2725
data_list = self.zilliz.col.query(expr=f'pk in {ids}', output_fields=["*"])
for data in data_list:
text = data.pop("text")
result.append(Document(page_content=text, metadata=data))
return result
def del_doc_by_ids(self, ids: List[str]) -> bool:
self.zilliz.col.delete(expr=f'pk in {ids}')
@staticmethod
def search(zilliz_name, content, limit=3):
search_params = {
"metric_type": "IP",
"params": {},
}
c = ZillizKBService.get_collection(zilliz_name)
return c.search(content, "embeddings", search_params, limit=limit, output_fields=["content"])
def do_create_kb(self):
pass
def vs_type(self) -> str:
return SupportedVSType.ZILLIZ
def _load_zilliz(self):
zilliz_args = kbs_config.get("zilliz")
self.zilliz = Zilliz(embedding_function=get_Embeddings(self.embed_model),
collection_name=self.kb_name, connection_args=zilliz_args)
def do_init(self):
self._load_zilliz()
def do_drop_kb(self):
if self.zilliz.col:
self.zilliz.col.release()
self.zilliz.col.drop()
def do_search(self, query: str, top_k: int, score_threshold: float):
self._load_zilliz()
embed_func = get_Embeddings(self.embed_model)
embeddings = embed_func.embed_query(query)
docs = self.zilliz.similarity_search_with_score_by_vector(embeddings, top_k)
return score_threshold_process(score_threshold, top_k, docs)
def do_add_doc(self, docs: List[Document], **kwargs) -> List[Dict]:
for doc in docs:
for k, v in doc.metadata.items():
doc.metadata[k] = str(v)
for field in self.zilliz.fields:
doc.metadata.setdefault(field, "")
doc.metadata.pop(self.zilliz._text_field, None)
doc.metadata.pop(self.zilliz._vector_field, None)
ids = self.zilliz.add_documents(docs)
doc_infos = [{"id": id, "metadata": doc.metadata} for id, doc in zip(ids, docs)]
return doc_infos
def do_delete_doc(self, kb_file: KnowledgeFile, **kwargs):
if self.zilliz.col:
filepath = kb_file.filepath.replace('\\', '\\\\')
delete_list = [item.get("pk") for item in
self.zilliz.col.query(expr=f'source == "{filepath}"', output_fields=["pk"])]
self.zilliz.col.delete(expr=f'pk in {delete_list}')
def do_clear_vs(self):
if self.zilliz.col:
self.do_drop_kb()
self.do_init()
if __name__ == '__main__':
from server.db.base import Base, engine
Base.metadata.create_all(bind=engine)
zillizService = ZillizKBService("test")