mirror of
https://github.com/RYDE-WORK/Langchain-Chatchat.git
synced 2026-01-29 18:29:44 +08:00
* publish 0.2.10 (#2797) 新功能: - 优化 PDF 文件的 OCR,过滤无意义的小图片 by @liunux4odoo #2525 - 支持 Gemini 在线模型 by @yhfgyyf #2630 - 支持 GLM4 在线模型 by @zRzRzRzRzRzRzR - elasticsearch更新https连接 by @xldistance #2390 - 增强对PPT、DOC知识库文件的OCR识别 by @596192804 #2013 - 更新 Agent 对话功能 by @zRzRzRzRzRzRzR - 每次创建对象时从连接池获取连接,避免每次执行方法时都新建连接 by @Lijia0 #2480 - 实现 ChatOpenAI 判断token有没有超过模型的context上下文长度 by @glide-the - 更新运行数据库报错和项目里程碑 by @zRzRzRzRzRzRzR #2659 - 更新配置文件/文档/依赖 by @imClumsyPanda @zRzRzRzRzRzRzR - 添加日文版 readme by @eltociear #2787 修复: - langchain 更新后,PGVector 向量库连接错误 by @HALIndex #2591 - Minimax's model worker 错误 by @xyhshen - ES库无法向量检索.添加mappings创建向量索引 by MSZheng20 #2688 * Update README.md * Add files via upload * Update README.md * 修复PDF旋转的BUG * Support Chroma * perf delete unused import * 忽略测试代码 * 更新文件 * API前端丢失问题解决 * 更新了chromadb的打印的符号 * autodl代号错误 * Update README.md * Update README.md * Update README.md * 修复milvus相关bug * 支持星火3.5模型 * 修复es 知识库查询bug (#2848) * 修复es 知识库查询bug (#2848) * 更新zhipuai请求方式 * 增加对 .htm 扩展名的显式支持 * 更新readme * Docker镜像制作与K8S YAML部署操作说明 (#2892) * Dev (#2280) * 修复Azure 不设置Max token的bug * 重写agent 1. 修改Agent实现方式,支持多参数,仅剩 ChatGLM3-6b和 OpenAI GPT4 支持,剩余模型将在暂时缺席Agent功能 2. 删除agent_chat 集成到llm_chat中 3. 重写大部分工具,适应新Agent * 更新架构 * 删除web_chat,自动融合 * 移除所有聊天,都变成Agent控制 * 更新配置文件 * 更新配置模板和提示词 * 更改参数选择bug * 修复模型选择的bug * 更新一些内容 * 更新多模态 语音 视觉的内容 1. 更新本地模型语音 视觉多模态功能并设置了对应工具 * 支持多模态Grounding 1. 美化了chat的代码 2. 支持视觉工具输出Grounding任务 3. 完善工具调用的流程 * 支持XPU,修改了glm3部分agent * 添加 qwen agent * 对其ChatGLM3-6B与Qwen-14B * fix callback handler * 更新Agent工具返回 * fix: LLMChain no output when no tools selected * 跟新了langchain 0.1.x需要的依赖和修改的代码 * 更新chatGLM3 langchain0.1.x Agent写法 * 按照 langchain 0.1 重写 qwen agent * 修复 callback 无效的问题 * 添加文生图工具 * webui 支持文生图 * 集成openai plugins插件 * 删除fastchat的配置 * 增加openai插件 * 集成openai plugins插件 * 更新模型执行列表和今晚修改的内容 * 集成openai_plugins/imitater插件 * 集成openai_plugins/imitater插件 * 集成openai_plugins/imitater插件 * 减少错误的显示 * 标准配置 * vllm参数配置 * 增加智谱插件 * 删除本地fschat配置 * 删除本地fschat配置,pydantic升级到2 * 删除本地fschat workers * openai-plugins-list.json * 升级agent,pydantic升级到2 * fix model_config是系统关键词问题 * embeddings模块集成openai plugins插件,使用统一api调用 * loom模型服务update_store更新逻辑 * 集成LOOM在线embedding业务 * 本地知识库搜索字段修改 * 知识库在线api接入点配置在线api接入点配置更新逻辑 * Update model_config.py.example * 修改模型配置方式,所有模型以 openai 兼容框架的形式接入,chatchat 自身不再加载模型。 改变 Embeddings 模型改为使用框架 API,不再手动加载,删除自定义 Embeddings Keyword 代码 修改依赖文件,移除 torch transformers 等重依赖 暂时移出对 loom 的集成 后续: 1、优化目录结构 2、检查合并中有无被覆盖的 0.2.10 内容 * move document_loaders & text_splitter under server * make torch & transformers optional import pydantic Model & Field from langchain.pydantic_v1 instead of pydantic.v1 * - pydantic 限定为 v1,并统一项目中所有 pydantic 导入路径,为以后升级 v2 做准备 - 重构 api.py: - 按模块划分为不同的 router - 添加 openai 兼容的转发接口,项目默认使用该接口以实现模型负载均衡 - 添加 /tools 接口,可以获取/调用编写的 agent tools - 移除所有 EmbeddingFuncAdapter,统一改用 get_Embeddings - 待办: - /chat/chat 接口改为 openai 兼容 - 添加 /chat/kb_chat 接口,openai 兼容 - 改变 ntlk/knowledge_base/logs 等数据目录位置 * 移除 llama-index 依赖;修复 /v1/models 错误 * 原因:windows下启动失败提示补充python-multipart包 (#3184) 改动:requirements添加python-multipart==0.0.9 版本:0.0.9 Requires: Python >=3.8 Co-authored-by: XuCai <liangxc@akulaku.com> * 添加 xinference 本地模型和自定义模型配置 UI: streamlit run model_loaders/xinference_manager.py * update xinference manager ui * fix merge conflict * model_config 中补充 oneapi 默认在线模型;/v1/models 接口支持 oneapi 平台,统一返回模型列表 * 重写 calculate 工具 * 调整根目录结构,kb/logs/media/nltk_data 移动到专用数据目录(可配置,默认 data)。注意知识库文件要做相应移动 * update kb_config.py.example * 优化 ES 知识库 - 开发者 - get_OpenAIClient 的 local_wrap 默认值改为 False,避免 API 服务未启动导致其它功能受阻(如Embeddings) - 修改 ES 知识库服务: - 检索策略改为 ApproxRetrievalStrategy - 设置 timeout 为 60, 避免文档过多导致 ConnecitonTimeout Error - 修改 LocalAIEmbeddings,使用多线程进行 embed_texts,效果不明显,瓶颈可能主要在提供 Embedding 的服务器上 * 修复glm3 agent被注释的agent会话文本结构解析代码 看起来输出的文本占位符如下,目前解析代码是有问题的 Thought <|assistant|> Action\r ```python tool_call(action_input) ```<|observation|> * make qwen agent work with langchain>=0.1 (#3228) * make xinference model manager support xinference 0.9.x * 使用多进程提高导入知识库的速度 (#3276) * xinference的代码 先传 我后面来改 * Delete server/xinference directory * Create khazic * diiii diii * Revert "xinference的代码" * fix markdown header split (#1825) (#3324) * dify model_providers configuration This module provides the interface for invoking and authenticating various models, and offers Dify a unified information and credentials form rule for model providers. * fix merge conflict: langchain Embeddings not imported in server.utils * 添加 react 编写的新版 WEBUI (#3417) * feat:提交前端代码 * feat:提交logo样式切换 * feat:替换avatar、部分位置icon、chatchat相关说明、git链接、Wiki链接、关于、设置、反馈与建议等功能,关闭lobehub自检更新功能 * fix:移除多余代码 --------- Co-authored-by: liunux4odoo <41217877+liunux4odoo@users.noreply.github.com> * model_providers bootstrap * model_providers bootstrap * update to pydantic v2 (#3486) * 使用poetry管理项目 * 使用poetry管理项目 * dev分支解决pydantic版本冲突问题,增加ollama配置,支持ollama会话和向量接口 (#3508) * dev分支解决pydantic版本冲突问题,增加ollama配置,支持ollama会话和向量接口 1、因dev版本的pydantic升级到了v2版本,由于在class History(BaseModel)中使用了from server.pydantic_v1,而fastapi的引用已变为pydantic的v2版本,所以fastapi用v2版本去校验用v1版本定义的对象,当会话历史histtory不为空的时候,会报错:TypeError: BaseModel.validate() takes 2 positional arguments but 3 were given。经测试,解方法为在class History(BaseModel)中也使用v2版本即可; 2、配置文件参照其它平台配置,增加了ollama平台相关配置,会话模型用户可根据实际情况自行添加,向量模型目前支持nomic-embed-text(必须升级ollama到0.1.29以上)。 3、因ollama官方只在会话部分对openai api做了兼容,向量api暂未适配,好在langchain官方库支持OllamaEmbeddings,因而在get_Embeddings方法中添加了相关支持代码。 * 修复 pydantic 升级到 v2 后 DocumentWithVsID 和 /v1/embeddings 兼容性问题 --------- Co-authored-by: srszzw <srszzw@163.com> Co-authored-by: liunux4odoo <liunux@qq.com> * 对python的要求降级到py38 * fix bugs; make poetry using tsinghua mirror of pypi * update gitignore; remove unignored files * update wiki sub module * 20240326 * 20240326 * qqqq * 删除历史文件 * 移动项目模块 * update .gitignore; fix model version error in api_schemas * 封装ModelManager * - 重写 tool 部分: (#3553) - 简化 tool 的定义方式 - 所有 tool 和 tool_config 支持热加载 - 修复:json_schema_extra warning * 使用yaml加载用户配置适配器 * 格式化代码 * 格式化 * 优化工具定义;添加 openai 兼容的统一 chat 接口 (#3570) - 修复: - Qwen Agent 的 OutputParser 不再抛出异常,遇到非 COT 文本直接返回 - CallbackHandler 正确处理工具调用信息 - 重写 tool 定义方式: - 添加 regist_tool 简化 tool 定义: - 可以指定一个用户友好的名称 - 自动将函数的 __doc__ 作为 tool.description - 支持用 Field 定义参数,不再需要额外定义 ModelSchema - 添加 BaseToolOutput 封装 tool 返回结果,以便同时获取原始值、给LLM的字符串值 - 支持工具热加载(有待测试) - 增加 openai 兼容的统一 chat 接口,通过 tools/tool_choice/extra_body 不同参数组合支持: - Agent 对话 - 指定工具调用(如知识库RAG) - LLM 对话 - 根据后端功能更新 webui * 修复:search_local_knowledge_base 工具返回值错误;/tools 路由错误;webui 中“正在思考”一直显示 (#3571) * 添加 openai 兼容的 files 接口 (#3573) * 使用BootstrapWebBuilder适配RESTFulOpenAIBootstrapBaseWeb加载 * 格式化和代码检查说明 * 模型列表适配 * make format * chat_completions接口报文适配 * make format * xinference 插件示例 * 一些默认参数 * exec path fix * 解决ollama部署的qwen,执行agent,返回的json格式不正确问题。 * provider_configuration.py 查询所有的平台信息,包含计费策略和配置schema_validators(参数必填信息校验规则) /workspaces/current/model-providers 查询平台模型分类的详细默认信息,包含了模型类型,模型参数,模型状态 workspaces/current/models/model-types/{model_type} * 开发手册 * 兼容model_providers,集成webui及API中平台配置的初始化 (#3625) * provider_configuration init of MODEL_PLATFORMS * 开发手册 * 兼容model_providers,集成webui及API中平台配置的初始化 * Dev model providers (#3628) * gemini 初始化参数问题 * gemini 同步工具调用 * embedding convert endpoint * 修复 --api -w命令 * /v1/models 接口返回值由 List[Model] 改为 {'data': List[Model]},兼容最新版 xinference * 3.8兼容 (#3769) * 增加使用说明 * 3.8兼容性配置 * fix * formater * 不同平台兼容测试用例 * embedding兼容 * 增加日志信息 * pip源仓库设置,一些版本问题,启动说明 配置说明 (#3854) * 仓库设置,一些版本问题 * pip源仓库设置,一些版本问题,启动说明 * 配置说明 * 泛型标记错误 (#3855) * 仓库设置,一些版本问题 * pip源仓库设置,一些版本问题,启动说明 * 配置说明 * 发布的依赖信息 * 泛型标记错误 * 泛型标记错误 * CICD github action build publish pypi、Release Tag (#3886) * 测试用例 * CICD 流程 * CICD 流程 * CICD 流程 * 一些agent数据处理的问题,model_runtime模块的说明文档 (#3943) * 一些agent数据出来的问题 * Changes: - Translated and updated the Model Runtime documentation to reflect the latest changes and features. - Clarified the decoupling benefits of the Model Runtime module from the Chatchat service. - Removed outdated information regarding the model configuration storage module. - Detailed the retained functionalities post-removal of the Dify configuration page. - Provided a comprehensive overview of the Model Runtime's three-layered structure. - Included the status of the `fetch-from-remote` feature and its non-implementation in Dify. - Added instructions for custom service provider model capabilities. * - 新功能 (#3944) - streamlit 更新到 1.34,webui 支持 Dialog 操作 - streamlit-chatbox 更新到 1.1.12,更好的多会话支持 - 开发者 - 在 API 中增加项目图片路由(/img/{file_name}),方便前端使用 * 修改包名 * 修改包信息 * ollama配置解析问题 * 用户配置动态加载 (#3951) * version = "0.3.0.20240506" * version = "0.3.0.20240506" * version = "0.3.0.20240506" * version = "0.3.0.20240506" * 启动说明 * 一些bug * 修复了一些配置重载的bug * 配置的加载行为修改 * 配置的加载行为修改 * agent代码优化 * ollama 代码升级,使用openai协议 * 支持deepseek客户端 * contributing (#4043) * 添加了贡献说明 docs/contributing,包含了一些代码仓库说明和开发规范,以及在model_providers下面编写了一些单元测试的示例 * 关于providers的配置说明 * python3.8兼容 * python3.8兼容 * ollama兼容 * ollama兼容 * 一些兼容 pydantic<3,>=1.9.0 的代码, * 一些兼容 pydantic<3,>=1.9.0 model_config 的代码, * make format * test * 更新版本 * get_img_base64 * get_img_base64 * get_img_base64 * get_img_base64 * get_img_base64 * 统一模型类型编码 * 向量处理问题 * 优化目录结构 (#4058) * 优化目录结构 * 修改一些测试问题 --------- Co-authored-by: glide-the <2533736852@qq.com> * repositories * 调整日志 * 调整日志zdf * 增加可选依赖extras * feat:Added some documentation. (#4085) * feat:Added some documentation. * feat:Added some documentation. * feat:Added some documentation. --------- Co-authored-by: yuehuazhang <yuehuazhang@tencent.com> * fix code.md typos * fix chatchat-server/pyproject.toml typos * feat:README (#4118) Co-authored-by: yuehuazhang <yuehuazhang@tencent.com> * 初始化数据库集成model_providers * 关闭守护进程 * 1、修改知识库列表接口,返回全量属性字段,同时修改受影响的相关代码。 (#4119) 2、run_in_process_pool改为run_in_thread_pool,解决兼容性问题。 3、poetry配置文件修复。 * 动态更新Prompt中的知识库描述信息,使大模型更容易判断使用哪个知识库。 (#4121) * 1、修改知识库列表接口,返回全量属性字段,同时修改受影响的相关代码。 2、run_in_process_pool改为run_in_thread_pool,解决兼容性问题。 3、poetry配置文件修复。 * 1、动态更新Prompt中的知识库描述信息,使大模型更容易判断使用哪个知识库。 * fix: 补充 xinference 配置信息 (#4123) * feat:README * feat:补充 xinference 平台 llm 和 embedding 模型配置. --------- Co-authored-by: yuehuazhang <yuehuazhang@tencent.com> * 知识库工具的下拉列表改为动态获取,不必重启服务。 (#4126) * 1、知识库工具的下拉列表改为动态获取,不必重启服务。 * update README and imgs * update README and imgs * update README and imgs * update README and imgs * 修改安装说明描述问题 * make formater * 更新版本"0.3.0.20240606 * Update code.md * 优化知识库相关功能 (#4153) - 新功能 - pypi 包新增 chatchat-kb 命令脚本,对应 init_database.py 功能 - 开发者 - _model_config.py 中默认包含 xinference 配置项 - 所有涉及向量库的操作,前置检查当前 Embed 模型是否可用 - /knowledge_base/create_knowledge_base 接口增加 kb_info 参数 - /knowledge_base/list_files 接口返回所有数据库字段,而非文件名称列表 - 修正 xinference 模型管理脚本 * 消除警告 * 一些依赖问题 * 增加text2sql工具,支持特定表、智能判定表,支持对表名进行额外说明 (#4154) * 1、增加text2sql工具,支持特定表、智能判定表,支持对表名进行额外说明 * 支持SQLAlchemy大部分数据库、新增read-only模式,提高安全性、增加text2sql使用建议 (#4155) * 1、修改text2sql连接配置,支持SQLAlchemy大部分数据库; 2、新增read-only模式,若有数据库写保护需求,会从大模型判断、SQLAlchemy拦截器两个层面进行写拦截,提高安全性; 3、增加text2sql使用建议; * dotenv * dotenv 配置 * 用户工作空间操作 (#4156) 工作空间的配置预设,提供ConfigBasic建造方法产生实例。 该类的实例对象用于存储工作空间的配置信息,如工作空间的路径等 工作空间的配置信息存储在用户的家目录下的.config/chatchat/workspace/workspace_config.json文件中。 注意:不存在则读取默认 提供了操作入口 指令` chatchat-config` 工作空间配置 options: ``` -h, --help show this help message and exit -v {true,false}, --verbose {true,false} 是否开启详细日志 -d DATA, --data DATA 数据存放路径 -f FORMAT, --format FORMAT 日志格式 --clear 清除配置 ``` * 配置路径问题 * fix faiss_cache bug * Feature(File RAG): add file_rag in chatchat-server, add ensemble retriever and vectorstore retriever. * Feature(File RAG): add file_rag in chatchat-server, add ensemble retriever and vectorstore retriever. * fix xinference manager bug * Fix(File RAG): use jieba instead of cutword * Fix(File RAG): update kb_doc_api.py * 工作空间的配置预设,提供ConfigBasic建造 实例。 (#4158) - ConfigWorkSpace接口说明 ```text ConfigWorkSpace是一个配置工作空间的抽象类,提供基础的配置信息存储和读取功能。 提供ConfigFactory建造方法产生实例。 该类的实例对象用于存储工作空间的配置信息,如工作空间的路径等 工作空间的配置信息存储在用户的家目录下的.chatchat/workspace/workspace_config.json文件中。 注意:不存在则读取默认 ``` * 编写配置说明 * 编写配置说明 --------- Co-authored-by: liunux4odoo <41217877+liunux4odoo@users.noreply.github.com> Co-authored-by: glide-the <2533736852@qq.com> Co-authored-by: tonysong <tonysong@digitalgd.com.cn> Co-authored-by: songpb <songpb@gmail.com> Co-authored-by: showmecodett <showmecodett@gmail.com> Co-authored-by: zR <2448370773@qq.com> Co-authored-by: zqt <1178747941@qq.com> Co-authored-by: zqt996 <67185303+zqt996@users.noreply.github.com> Co-authored-by: fengyaojie <fengyaojie@xdf.cn> Co-authored-by: Hans WAN <hanswan@tom.com> Co-authored-by: thinklover <thinklover@gmail.com> Co-authored-by: liunux4odoo <liunux@qq.com> Co-authored-by: xucailiang <74602715+xucailiang@users.noreply.github.com> Co-authored-by: XuCai <liangxc@akulaku.com> Co-authored-by: dignfei <913015993@qq.com> Co-authored-by: Leb <khazzz1c@gmail.com> Co-authored-by: Sumkor <sumkor@foxmail.com> Co-authored-by: panhong <381500590@qq.com> Co-authored-by: srszzw <741992282@qq.com> Co-authored-by: srszzw <srszzw@163.com> Co-authored-by: yuehua-s <41819795+yuehua-s@users.noreply.github.com> Co-authored-by: yuehuazhang <yuehuazhang@tencent.com>
728 lines
24 KiB
Python
728 lines
24 KiB
Python
# 该文件封装了对api.py的请求,可以被不同的webui使用
|
||
# 通过ApiRequest和AsyncApiRequest支持同步/异步调用
|
||
|
||
from typing import *
|
||
from pathlib import Path
|
||
from chatchat.configs import (
|
||
DEFAULT_EMBEDDING_MODEL,
|
||
DEFAULT_VS_TYPE,
|
||
LLM_MODEL_CONFIG,
|
||
SCORE_THRESHOLD,
|
||
CHUNK_SIZE,
|
||
OVERLAP_SIZE,
|
||
ZH_TITLE_ENHANCE,
|
||
VECTOR_SEARCH_TOP_K,
|
||
HTTPX_DEFAULT_TIMEOUT,
|
||
log_verbose,
|
||
IMG_DIR
|
||
)
|
||
import httpx
|
||
import contextlib
|
||
import json
|
||
import os
|
||
import base64
|
||
from io import BytesIO
|
||
from chatchat.server.utils import set_httpx_config, api_address, get_httpx_client
|
||
|
||
|
||
import logging
|
||
|
||
logger = logging.getLogger()
|
||
|
||
set_httpx_config()
|
||
|
||
|
||
class ApiRequest:
|
||
'''
|
||
api.py调用的封装(同步模式),简化api调用方式
|
||
'''
|
||
|
||
def __init__(
|
||
self,
|
||
base_url: str = api_address(),
|
||
timeout: float = HTTPX_DEFAULT_TIMEOUT,
|
||
):
|
||
self.base_url = base_url
|
||
self.timeout = timeout
|
||
self._use_async = False
|
||
self._client = None
|
||
|
||
@property
|
||
def client(self):
|
||
if self._client is None or self._client.is_closed:
|
||
self._client = get_httpx_client(base_url=self.base_url,
|
||
use_async=self._use_async,
|
||
timeout=self.timeout)
|
||
return self._client
|
||
|
||
def get(
|
||
self,
|
||
url: str,
|
||
params: Union[Dict, List[Tuple], bytes] = None,
|
||
retry: int = 3,
|
||
stream: bool = False,
|
||
**kwargs: Any,
|
||
) -> Union[httpx.Response, Iterator[httpx.Response], None]:
|
||
while retry > 0:
|
||
try:
|
||
if stream:
|
||
return self.client.stream("GET", url, params=params, **kwargs)
|
||
else:
|
||
return self.client.get(url, params=params, **kwargs)
|
||
except Exception as e:
|
||
msg = f"error when get {url}: {e}"
|
||
logger.error(f'{e.__class__.__name__}: {msg}',
|
||
exc_info=e if log_verbose else None)
|
||
retry -= 1
|
||
|
||
def post(
|
||
self,
|
||
url: str,
|
||
data: Dict = None,
|
||
json: Dict = None,
|
||
retry: int = 3,
|
||
stream: bool = False,
|
||
**kwargs: Any
|
||
) -> Union[httpx.Response, Iterator[httpx.Response], None]:
|
||
while retry > 0:
|
||
try:
|
||
# print(kwargs)
|
||
if stream:
|
||
return self.client.stream("POST", url, data=data, json=json, **kwargs)
|
||
else:
|
||
return self.client.post(url, data=data, json=json, **kwargs)
|
||
except Exception as e:
|
||
msg = f"error when post {url}: {e}"
|
||
logger.error(f'{e.__class__.__name__}: {msg}',
|
||
exc_info=e if log_verbose else None)
|
||
retry -= 1
|
||
|
||
def delete(
|
||
self,
|
||
url: str,
|
||
data: Dict = None,
|
||
json: Dict = None,
|
||
retry: int = 3,
|
||
stream: bool = False,
|
||
**kwargs: Any
|
||
) -> Union[httpx.Response, Iterator[httpx.Response], None]:
|
||
while retry > 0:
|
||
try:
|
||
if stream:
|
||
return self.client.stream("DELETE", url, data=data, json=json, **kwargs)
|
||
else:
|
||
return self.client.delete(url, data=data, json=json, **kwargs)
|
||
except Exception as e:
|
||
msg = f"error when delete {url}: {e}"
|
||
logger.error(f'{e.__class__.__name__}: {msg}',
|
||
exc_info=e if log_verbose else None)
|
||
retry -= 1
|
||
|
||
def _httpx_stream2generator(
|
||
self,
|
||
response: contextlib._GeneratorContextManager,
|
||
as_json: bool = False,
|
||
):
|
||
'''
|
||
将httpx.stream返回的GeneratorContextManager转化为普通生成器
|
||
'''
|
||
|
||
async def ret_async(response, as_json):
|
||
try:
|
||
async with response as r:
|
||
async for chunk in r.aiter_text(None):
|
||
if not chunk: # fastchat api yield empty bytes on start and end
|
||
continue
|
||
if as_json:
|
||
try:
|
||
if chunk.startswith("data: "):
|
||
data = json.loads(chunk[6:-2])
|
||
elif chunk.startswith(":"): # skip sse comment line
|
||
continue
|
||
else:
|
||
data = json.loads(chunk)
|
||
yield data
|
||
except Exception as e:
|
||
msg = f"接口返回json错误: ‘{chunk}’。错误信息是:{e}。"
|
||
logger.error(f'{e.__class__.__name__}: {msg}',
|
||
exc_info=e if log_verbose else None)
|
||
else:
|
||
# print(chunk, end="", flush=True)
|
||
yield chunk
|
||
except httpx.ConnectError as e:
|
||
msg = f"无法连接API服务器,请确认 ‘api.py’ 已正常启动。({e})"
|
||
logger.error(msg)
|
||
yield {"code": 500, "msg": msg}
|
||
except httpx.ReadTimeout as e:
|
||
msg = f"API通信超时,请确认已启动FastChat与API服务(详见Wiki '5. 启动 API 服务或 Web UI')。({e})"
|
||
logger.error(msg)
|
||
yield {"code": 500, "msg": msg}
|
||
except Exception as e:
|
||
msg = f"API通信遇到错误:{e}"
|
||
logger.error(f'{e.__class__.__name__}: {msg}',
|
||
exc_info=e if log_verbose else None)
|
||
yield {"code": 500, "msg": msg}
|
||
|
||
def ret_sync(response, as_json):
|
||
try:
|
||
with response as r:
|
||
for chunk in r.iter_text(None):
|
||
if not chunk: # fastchat api yield empty bytes on start and end
|
||
continue
|
||
if as_json:
|
||
try:
|
||
if chunk.startswith("data: "):
|
||
data = json.loads(chunk[6:-2])
|
||
elif chunk.startswith(":"): # skip sse comment line
|
||
continue
|
||
else:
|
||
data = json.loads(chunk)
|
||
yield data
|
||
except Exception as e:
|
||
msg = f"接口返回json错误: ‘{chunk}’。错误信息是:{e}。"
|
||
logger.error(f'{e.__class__.__name__}: {msg}',
|
||
exc_info=e if log_verbose else None)
|
||
else:
|
||
# print(chunk, end="", flush=True)
|
||
yield chunk
|
||
except httpx.ConnectError as e:
|
||
msg = f"无法连接API服务器,请确认 ‘api.py’ 已正常启动。({e})"
|
||
logger.error(msg)
|
||
yield {"code": 500, "msg": msg}
|
||
except httpx.ReadTimeout as e:
|
||
msg = f"API通信超时,请确认已启动FastChat与API服务(详见Wiki '5. 启动 API 服务或 Web UI')。({e})"
|
||
logger.error(msg)
|
||
yield {"code": 500, "msg": msg}
|
||
except Exception as e:
|
||
msg = f"API通信遇到错误:{e}"
|
||
logger.error(f'{e.__class__.__name__}: {msg}',
|
||
exc_info=e if log_verbose else None)
|
||
yield {"code": 500, "msg": msg}
|
||
|
||
if self._use_async:
|
||
return ret_async(response, as_json)
|
||
else:
|
||
return ret_sync(response, as_json)
|
||
|
||
def _get_response_value(
|
||
self,
|
||
response: httpx.Response,
|
||
as_json: bool = False,
|
||
value_func: Callable = None,
|
||
):
|
||
'''
|
||
转换同步或异步请求返回的响应
|
||
`as_json`: 返回json
|
||
`value_func`: 用户可以自定义返回值,该函数接受response或json
|
||
'''
|
||
|
||
def to_json(r):
|
||
try:
|
||
return r.json()
|
||
except Exception as e:
|
||
msg = "API未能返回正确的JSON。" + str(e)
|
||
if log_verbose:
|
||
logger.error(f'{e.__class__.__name__}: {msg}',
|
||
exc_info=e if log_verbose else None)
|
||
return {"code": 500, "msg": msg, "data": None}
|
||
|
||
if value_func is None:
|
||
value_func = (lambda r: r)
|
||
|
||
async def ret_async(response):
|
||
if as_json:
|
||
return value_func(to_json(await response))
|
||
else:
|
||
return value_func(await response)
|
||
|
||
if self._use_async:
|
||
return ret_async(response)
|
||
else:
|
||
if as_json:
|
||
return value_func(to_json(response))
|
||
else:
|
||
return value_func(response)
|
||
|
||
# 服务器信息
|
||
def get_server_configs(self, **kwargs) -> Dict:
|
||
response = self.post("/server/configs", **kwargs)
|
||
return self._get_response_value(response, as_json=True)
|
||
|
||
def get_prompt_template(
|
||
self,
|
||
type: str = "llm_chat",
|
||
name: str = "default",
|
||
**kwargs,
|
||
) -> str:
|
||
data = {
|
||
"type": type,
|
||
"name": name,
|
||
}
|
||
response = self.post("/server/get_prompt_template", json=data, **kwargs)
|
||
return self._get_response_value(response, value_func=lambda r: r.text)
|
||
|
||
# 对话相关操作
|
||
def chat_chat(
|
||
self,
|
||
query: str,
|
||
metadata: dict,
|
||
conversation_id: str = None,
|
||
history_len: int = -1,
|
||
history: List[Dict] = [],
|
||
stream: bool = True,
|
||
chat_model_config: Dict = None,
|
||
tool_config: Dict = None,
|
||
**kwargs,
|
||
):
|
||
'''
|
||
对应api.py/chat/chat接口
|
||
'''
|
||
data = {
|
||
"query": query,
|
||
"metadata": metadata,
|
||
"conversation_id": conversation_id,
|
||
"history_len": history_len,
|
||
"history": history,
|
||
"stream": stream,
|
||
"chat_model_config": chat_model_config,
|
||
"tool_config": tool_config,
|
||
}
|
||
|
||
# print(f"received input message:")
|
||
# pprint(data)
|
||
|
||
response = self.post("/chat/chat", json=data, stream=True, **kwargs)
|
||
return self._httpx_stream2generator(response, as_json=True)
|
||
|
||
def upload_temp_docs(
|
||
self,
|
||
files: List[Union[str, Path, bytes]],
|
||
knowledge_id: str = None,
|
||
chunk_size=CHUNK_SIZE,
|
||
chunk_overlap=OVERLAP_SIZE,
|
||
zh_title_enhance=ZH_TITLE_ENHANCE,
|
||
):
|
||
'''
|
||
对应api.py/knowledge_base/upload_tmep_docs接口
|
||
'''
|
||
|
||
def convert_file(file, filename=None):
|
||
if isinstance(file, bytes): # raw bytes
|
||
file = BytesIO(file)
|
||
elif hasattr(file, "read"): # a file io like object
|
||
filename = filename or file.name
|
||
else: # a local path
|
||
file = Path(file).absolute().open("rb")
|
||
filename = filename or os.path.split(file.name)[-1]
|
||
return filename, file
|
||
|
||
files = [convert_file(file) for file in files]
|
||
data = {
|
||
"knowledge_id": knowledge_id,
|
||
"chunk_size": chunk_size,
|
||
"chunk_overlap": chunk_overlap,
|
||
"zh_title_enhance": zh_title_enhance,
|
||
}
|
||
|
||
response = self.post(
|
||
"/knowledge_base/upload_temp_docs",
|
||
data=data,
|
||
files=[("files", (filename, file)) for filename, file in files],
|
||
)
|
||
return self._get_response_value(response, as_json=True)
|
||
|
||
def file_chat(
|
||
self,
|
||
query: str,
|
||
knowledge_id: str,
|
||
top_k: int = VECTOR_SEARCH_TOP_K,
|
||
score_threshold: float = SCORE_THRESHOLD,
|
||
history: List[Dict] = [],
|
||
stream: bool = True,
|
||
model: str = None,
|
||
temperature: float = 0.9,
|
||
max_tokens: int = None,
|
||
prompt_name: str = "default",
|
||
):
|
||
'''
|
||
对应api.py/chat/file_chat接口
|
||
'''
|
||
data = {
|
||
"query": query,
|
||
"knowledge_id": knowledge_id,
|
||
"top_k": top_k,
|
||
"score_threshold": score_threshold,
|
||
"history": history,
|
||
"stream": stream,
|
||
"model_name": model,
|
||
"temperature": temperature,
|
||
"max_tokens": max_tokens,
|
||
"prompt_name": prompt_name,
|
||
}
|
||
|
||
response = self.post(
|
||
"/chat/file_chat",
|
||
json=data,
|
||
stream=True,
|
||
)
|
||
return self._httpx_stream2generator(response, as_json=True)
|
||
|
||
# 知识库相关操作
|
||
|
||
def list_knowledge_bases(
|
||
self,
|
||
):
|
||
'''
|
||
对应api.py/knowledge_base/list_knowledge_bases接口
|
||
'''
|
||
response = self.get("/knowledge_base/list_knowledge_bases")
|
||
return self._get_response_value(response,
|
||
as_json=True,
|
||
value_func=lambda r: r.get("data", []))
|
||
|
||
def create_knowledge_base(
|
||
self,
|
||
knowledge_base_name: str,
|
||
vector_store_type: str = DEFAULT_VS_TYPE,
|
||
embed_model: str = DEFAULT_EMBEDDING_MODEL,
|
||
):
|
||
'''
|
||
对应api.py/knowledge_base/create_knowledge_base接口
|
||
'''
|
||
data = {
|
||
"knowledge_base_name": knowledge_base_name,
|
||
"vector_store_type": vector_store_type,
|
||
"embed_model": embed_model,
|
||
}
|
||
|
||
response = self.post(
|
||
"/knowledge_base/create_knowledge_base",
|
||
json=data,
|
||
)
|
||
return self._get_response_value(response, as_json=True)
|
||
|
||
def delete_knowledge_base(
|
||
self,
|
||
knowledge_base_name: str,
|
||
):
|
||
'''
|
||
对应api.py/knowledge_base/delete_knowledge_base接口
|
||
'''
|
||
response = self.post(
|
||
"/knowledge_base/delete_knowledge_base",
|
||
json=f"{knowledge_base_name}",
|
||
)
|
||
return self._get_response_value(response, as_json=True)
|
||
|
||
def list_kb_docs(
|
||
self,
|
||
knowledge_base_name: str,
|
||
):
|
||
'''
|
||
对应api.py/knowledge_base/list_files接口
|
||
'''
|
||
response = self.get(
|
||
"/knowledge_base/list_files",
|
||
params={"knowledge_base_name": knowledge_base_name}
|
||
)
|
||
return self._get_response_value(response,
|
||
as_json=True,
|
||
value_func=lambda r: r.get("data", []))
|
||
|
||
def search_kb_docs(
|
||
self,
|
||
knowledge_base_name: str,
|
||
query: str = "",
|
||
top_k: int = VECTOR_SEARCH_TOP_K,
|
||
score_threshold: int = SCORE_THRESHOLD,
|
||
file_name: str = "",
|
||
metadata: dict = {},
|
||
) -> List:
|
||
'''
|
||
对应api.py/knowledge_base/search_docs接口
|
||
'''
|
||
data = {
|
||
"query": query,
|
||
"knowledge_base_name": knowledge_base_name,
|
||
"top_k": top_k,
|
||
"score_threshold": score_threshold,
|
||
"file_name": file_name,
|
||
"metadata": metadata,
|
||
}
|
||
|
||
response = self.post(
|
||
"/knowledge_base/search_docs",
|
||
json=data,
|
||
)
|
||
return self._get_response_value(response, as_json=True)
|
||
|
||
def upload_kb_docs(
|
||
self,
|
||
files: List[Union[str, Path, bytes]],
|
||
knowledge_base_name: str,
|
||
override: bool = False,
|
||
to_vector_store: bool = True,
|
||
chunk_size=CHUNK_SIZE,
|
||
chunk_overlap=OVERLAP_SIZE,
|
||
zh_title_enhance=ZH_TITLE_ENHANCE,
|
||
docs: Dict = {},
|
||
not_refresh_vs_cache: bool = False,
|
||
):
|
||
'''
|
||
对应api.py/knowledge_base/upload_docs接口
|
||
'''
|
||
|
||
def convert_file(file, filename=None):
|
||
if isinstance(file, bytes): # raw bytes
|
||
file = BytesIO(file)
|
||
elif hasattr(file, "read"): # a file io like object
|
||
filename = filename or file.name
|
||
else: # a local path
|
||
file = Path(file).absolute().open("rb")
|
||
filename = filename or os.path.split(file.name)[-1]
|
||
return filename, file
|
||
|
||
files = [convert_file(file) for file in files]
|
||
data = {
|
||
"knowledge_base_name": knowledge_base_name,
|
||
"override": override,
|
||
"to_vector_store": to_vector_store,
|
||
"chunk_size": chunk_size,
|
||
"chunk_overlap": chunk_overlap,
|
||
"zh_title_enhance": zh_title_enhance,
|
||
"docs": docs,
|
||
"not_refresh_vs_cache": not_refresh_vs_cache,
|
||
}
|
||
|
||
if isinstance(data["docs"], dict):
|
||
data["docs"] = json.dumps(data["docs"], ensure_ascii=False)
|
||
response = self.post(
|
||
"/knowledge_base/upload_docs",
|
||
data=data,
|
||
files=[("files", (filename, file)) for filename, file in files],
|
||
)
|
||
return self._get_response_value(response, as_json=True)
|
||
|
||
def delete_kb_docs(
|
||
self,
|
||
knowledge_base_name: str,
|
||
file_names: List[str],
|
||
delete_content: bool = False,
|
||
not_refresh_vs_cache: bool = False,
|
||
):
|
||
'''
|
||
对应api.py/knowledge_base/delete_docs接口
|
||
'''
|
||
data = {
|
||
"knowledge_base_name": knowledge_base_name,
|
||
"file_names": file_names,
|
||
"delete_content": delete_content,
|
||
"not_refresh_vs_cache": not_refresh_vs_cache,
|
||
}
|
||
|
||
response = self.post(
|
||
"/knowledge_base/delete_docs",
|
||
json=data,
|
||
)
|
||
return self._get_response_value(response, as_json=True)
|
||
|
||
def update_kb_info(self, knowledge_base_name, kb_info):
|
||
'''
|
||
对应api.py/knowledge_base/update_info接口
|
||
'''
|
||
data = {
|
||
"knowledge_base_name": knowledge_base_name,
|
||
"kb_info": kb_info,
|
||
}
|
||
|
||
response = self.post(
|
||
"/knowledge_base/update_info",
|
||
json=data,
|
||
)
|
||
return self._get_response_value(response, as_json=True)
|
||
|
||
def update_kb_docs(
|
||
self,
|
||
knowledge_base_name: str,
|
||
file_names: List[str],
|
||
override_custom_docs: bool = False,
|
||
chunk_size=CHUNK_SIZE,
|
||
chunk_overlap=OVERLAP_SIZE,
|
||
zh_title_enhance=ZH_TITLE_ENHANCE,
|
||
docs: Dict = {},
|
||
not_refresh_vs_cache: bool = False,
|
||
):
|
||
'''
|
||
对应api.py/knowledge_base/update_docs接口
|
||
'''
|
||
data = {
|
||
"knowledge_base_name": knowledge_base_name,
|
||
"file_names": file_names,
|
||
"override_custom_docs": override_custom_docs,
|
||
"chunk_size": chunk_size,
|
||
"chunk_overlap": chunk_overlap,
|
||
"zh_title_enhance": zh_title_enhance,
|
||
"docs": docs,
|
||
"not_refresh_vs_cache": not_refresh_vs_cache,
|
||
}
|
||
|
||
if isinstance(data["docs"], dict):
|
||
data["docs"] = json.dumps(data["docs"], ensure_ascii=False)
|
||
|
||
response = self.post(
|
||
"/knowledge_base/update_docs",
|
||
json=data,
|
||
)
|
||
return self._get_response_value(response, as_json=True)
|
||
|
||
def recreate_vector_store(
|
||
self,
|
||
knowledge_base_name: str,
|
||
allow_empty_kb: bool = True,
|
||
vs_type: str = DEFAULT_VS_TYPE,
|
||
embed_model: str = DEFAULT_EMBEDDING_MODEL,
|
||
chunk_size=CHUNK_SIZE,
|
||
chunk_overlap=OVERLAP_SIZE,
|
||
zh_title_enhance=ZH_TITLE_ENHANCE,
|
||
):
|
||
'''
|
||
对应api.py/knowledge_base/recreate_vector_store接口
|
||
'''
|
||
data = {
|
||
"knowledge_base_name": knowledge_base_name,
|
||
"allow_empty_kb": allow_empty_kb,
|
||
"vs_type": vs_type,
|
||
"embed_model": embed_model,
|
||
"chunk_size": chunk_size,
|
||
"chunk_overlap": chunk_overlap,
|
||
"zh_title_enhance": zh_title_enhance,
|
||
}
|
||
|
||
response = self.post(
|
||
"/knowledge_base/recreate_vector_store",
|
||
json=data,
|
||
stream=True,
|
||
timeout=None,
|
||
)
|
||
return self._httpx_stream2generator(response, as_json=True)
|
||
|
||
def embed_texts(
|
||
self,
|
||
texts: List[str],
|
||
embed_model: str = DEFAULT_EMBEDDING_MODEL,
|
||
to_query: bool = False,
|
||
) -> List[List[float]]:
|
||
'''
|
||
对文本进行向量化,可选模型包括本地 embed_models 和支持 embeddings 的在线模型
|
||
'''
|
||
data = {
|
||
"texts": texts,
|
||
"embed_model": embed_model,
|
||
"to_query": to_query,
|
||
}
|
||
resp = self.post(
|
||
"/other/embed_texts",
|
||
json=data,
|
||
)
|
||
return self._get_response_value(resp, as_json=True, value_func=lambda r: r.get("data"))
|
||
|
||
def chat_feedback(
|
||
self,
|
||
message_id: str,
|
||
score: int,
|
||
reason: str = "",
|
||
) -> int:
|
||
'''
|
||
反馈对话评价
|
||
'''
|
||
data = {
|
||
"message_id": message_id,
|
||
"score": score,
|
||
"reason": reason,
|
||
}
|
||
resp = self.post("/chat/feedback", json=data)
|
||
return self._get_response_value(resp)
|
||
|
||
def list_tools(self) -> Dict:
|
||
'''
|
||
列出所有工具
|
||
'''
|
||
resp = self.get("/tools")
|
||
return self._get_response_value(resp, as_json=True, value_func=lambda r: r.get("data", {}))
|
||
|
||
def call_tool(
|
||
self,
|
||
name: str,
|
||
tool_input: Dict = {},
|
||
):
|
||
'''
|
||
调用工具
|
||
'''
|
||
data = {
|
||
"name": name,
|
||
"tool_input": tool_input,
|
||
}
|
||
resp = self.post("/tools/call", json=data)
|
||
return self._get_response_value(resp, as_json=True, value_func=lambda r: r.get("data"))
|
||
|
||
class AsyncApiRequest(ApiRequest):
|
||
def __init__(self, base_url: str = api_address(), timeout: float = HTTPX_DEFAULT_TIMEOUT):
|
||
super().__init__(base_url, timeout)
|
||
self._use_async = True
|
||
|
||
|
||
def check_error_msg(data: Union[str, dict, list], key: str = "errorMsg") -> str:
|
||
'''
|
||
return error message if error occured when requests API
|
||
'''
|
||
if isinstance(data, dict):
|
||
if key in data:
|
||
return data[key]
|
||
if "code" in data and data["code"] != 200:
|
||
return data["msg"]
|
||
return ""
|
||
|
||
|
||
def check_success_msg(data: Union[str, dict, list], key: str = "msg") -> str:
|
||
'''
|
||
return error message if error occured when requests API
|
||
'''
|
||
if (isinstance(data, dict)
|
||
and key in data
|
||
and "code" in data
|
||
and data["code"] == 200):
|
||
return data[key]
|
||
return ""
|
||
|
||
|
||
def get_img_base64(file_name: str) -> str:
|
||
'''
|
||
get_img_base64 used in streamlit.
|
||
absolute local path not working on windows.
|
||
'''
|
||
image = f"{IMG_DIR}/{file_name}"
|
||
# 读取图片
|
||
with open(image, "rb") as f:
|
||
buffer = BytesIO(f.read())
|
||
base_str = base64.b64encode(buffer.getvalue()).decode()
|
||
return f"data:image/png;base64,{base_str}"
|
||
|
||
|
||
if __name__ == "__main__":
|
||
api = ApiRequest()
|
||
aapi = AsyncApiRequest()
|
||
|
||
# with api.chat_chat("你好") as r:
|
||
# for t in r.iter_text(None):
|
||
# print(t)
|
||
|
||
# r = api.chat_chat("你好", no_remote_api=True)
|
||
# for t in r:
|
||
# print(t)
|
||
|
||
# r = api.duckduckgo_search_chat("室温超导最新研究进展", no_remote_api=True)
|
||
# for t in r:
|
||
# print(t)
|
||
|
||
# print(api.list_knowledge_bases())
|