mirror of
https://github.com/RYDE-WORK/Langchain-Chatchat.git
synced 2026-01-29 10:13:20 +08:00
* publish 0.2.10 (#2797) 新功能: - 优化 PDF 文件的 OCR,过滤无意义的小图片 by @liunux4odoo #2525 - 支持 Gemini 在线模型 by @yhfgyyf #2630 - 支持 GLM4 在线模型 by @zRzRzRzRzRzRzR - elasticsearch更新https连接 by @xldistance #2390 - 增强对PPT、DOC知识库文件的OCR识别 by @596192804 #2013 - 更新 Agent 对话功能 by @zRzRzRzRzRzRzR - 每次创建对象时从连接池获取连接,避免每次执行方法时都新建连接 by @Lijia0 #2480 - 实现 ChatOpenAI 判断token有没有超过模型的context上下文长度 by @glide-the - 更新运行数据库报错和项目里程碑 by @zRzRzRzRzRzRzR #2659 - 更新配置文件/文档/依赖 by @imClumsyPanda @zRzRzRzRzRzRzR - 添加日文版 readme by @eltociear #2787 修复: - langchain 更新后,PGVector 向量库连接错误 by @HALIndex #2591 - Minimax's model worker 错误 by @xyhshen - ES库无法向量检索.添加mappings创建向量索引 by MSZheng20 #2688 * Update README.md * Add files via upload * Update README.md * 修复PDF旋转的BUG * Support Chroma * perf delete unused import * 忽略测试代码 * 更新文件 * API前端丢失问题解决 * 更新了chromadb的打印的符号 * autodl代号错误 * Update README.md * Update README.md * Update README.md * 修复milvus相关bug * 支持星火3.5模型 * 修复es 知识库查询bug (#2848) * 修复es 知识库查询bug (#2848) * 更新zhipuai请求方式 * 增加对 .htm 扩展名的显式支持 * 更新readme * Docker镜像制作与K8S YAML部署操作说明 (#2892) * Dev (#2280) * 修复Azure 不设置Max token的bug * 重写agent 1. 修改Agent实现方式,支持多参数,仅剩 ChatGLM3-6b和 OpenAI GPT4 支持,剩余模型将在暂时缺席Agent功能 2. 删除agent_chat 集成到llm_chat中 3. 重写大部分工具,适应新Agent * 更新架构 * 删除web_chat,自动融合 * 移除所有聊天,都变成Agent控制 * 更新配置文件 * 更新配置模板和提示词 * 更改参数选择bug * 修复模型选择的bug * 更新一些内容 * 更新多模态 语音 视觉的内容 1. 更新本地模型语音 视觉多模态功能并设置了对应工具 * 支持多模态Grounding 1. 美化了chat的代码 2. 支持视觉工具输出Grounding任务 3. 完善工具调用的流程 * 支持XPU,修改了glm3部分agent * 添加 qwen agent * 对其ChatGLM3-6B与Qwen-14B * fix callback handler * 更新Agent工具返回 * fix: LLMChain no output when no tools selected * 跟新了langchain 0.1.x需要的依赖和修改的代码 * 更新chatGLM3 langchain0.1.x Agent写法 * 按照 langchain 0.1 重写 qwen agent * 修复 callback 无效的问题 * 添加文生图工具 * webui 支持文生图 * 集成openai plugins插件 * 删除fastchat的配置 * 增加openai插件 * 集成openai plugins插件 * 更新模型执行列表和今晚修改的内容 * 集成openai_plugins/imitater插件 * 集成openai_plugins/imitater插件 * 集成openai_plugins/imitater插件 * 减少错误的显示 * 标准配置 * vllm参数配置 * 增加智谱插件 * 删除本地fschat配置 * 删除本地fschat配置,pydantic升级到2 * 删除本地fschat workers * openai-plugins-list.json * 升级agent,pydantic升级到2 * fix model_config是系统关键词问题 * embeddings模块集成openai plugins插件,使用统一api调用 * loom模型服务update_store更新逻辑 * 集成LOOM在线embedding业务 * 本地知识库搜索字段修改 * 知识库在线api接入点配置在线api接入点配置更新逻辑 * Update model_config.py.example * 修改模型配置方式,所有模型以 openai 兼容框架的形式接入,chatchat 自身不再加载模型。 改变 Embeddings 模型改为使用框架 API,不再手动加载,删除自定义 Embeddings Keyword 代码 修改依赖文件,移除 torch transformers 等重依赖 暂时移出对 loom 的集成 后续: 1、优化目录结构 2、检查合并中有无被覆盖的 0.2.10 内容 * move document_loaders & text_splitter under server * make torch & transformers optional import pydantic Model & Field from langchain.pydantic_v1 instead of pydantic.v1 * - pydantic 限定为 v1,并统一项目中所有 pydantic 导入路径,为以后升级 v2 做准备 - 重构 api.py: - 按模块划分为不同的 router - 添加 openai 兼容的转发接口,项目默认使用该接口以实现模型负载均衡 - 添加 /tools 接口,可以获取/调用编写的 agent tools - 移除所有 EmbeddingFuncAdapter,统一改用 get_Embeddings - 待办: - /chat/chat 接口改为 openai 兼容 - 添加 /chat/kb_chat 接口,openai 兼容 - 改变 ntlk/knowledge_base/logs 等数据目录位置 * 移除 llama-index 依赖;修复 /v1/models 错误 * 原因:windows下启动失败提示补充python-multipart包 (#3184) 改动:requirements添加python-multipart==0.0.9 版本:0.0.9 Requires: Python >=3.8 Co-authored-by: XuCai <liangxc@akulaku.com> * 添加 xinference 本地模型和自定义模型配置 UI: streamlit run model_loaders/xinference_manager.py * update xinference manager ui * fix merge conflict * model_config 中补充 oneapi 默认在线模型;/v1/models 接口支持 oneapi 平台,统一返回模型列表 * 重写 calculate 工具 * 调整根目录结构,kb/logs/media/nltk_data 移动到专用数据目录(可配置,默认 data)。注意知识库文件要做相应移动 * update kb_config.py.example * 优化 ES 知识库 - 开发者 - get_OpenAIClient 的 local_wrap 默认值改为 False,避免 API 服务未启动导致其它功能受阻(如Embeddings) - 修改 ES 知识库服务: - 检索策略改为 ApproxRetrievalStrategy - 设置 timeout 为 60, 避免文档过多导致 ConnecitonTimeout Error - 修改 LocalAIEmbeddings,使用多线程进行 embed_texts,效果不明显,瓶颈可能主要在提供 Embedding 的服务器上 * 修复glm3 agent被注释的agent会话文本结构解析代码 看起来输出的文本占位符如下,目前解析代码是有问题的 Thought <|assistant|> Action\r ```python tool_call(action_input) ```<|observation|> * make qwen agent work with langchain>=0.1 (#3228) * make xinference model manager support xinference 0.9.x * 使用多进程提高导入知识库的速度 (#3276) * xinference的代码 先传 我后面来改 * Delete server/xinference directory * Create khazic * diiii diii * Revert "xinference的代码" * fix markdown header split (#1825) (#3324) * dify model_providers configuration This module provides the interface for invoking and authenticating various models, and offers Dify a unified information and credentials form rule for model providers. * fix merge conflict: langchain Embeddings not imported in server.utils * 添加 react 编写的新版 WEBUI (#3417) * feat:提交前端代码 * feat:提交logo样式切换 * feat:替换avatar、部分位置icon、chatchat相关说明、git链接、Wiki链接、关于、设置、反馈与建议等功能,关闭lobehub自检更新功能 * fix:移除多余代码 --------- Co-authored-by: liunux4odoo <41217877+liunux4odoo@users.noreply.github.com> * model_providers bootstrap * model_providers bootstrap * update to pydantic v2 (#3486) * 使用poetry管理项目 * 使用poetry管理项目 * dev分支解决pydantic版本冲突问题,增加ollama配置,支持ollama会话和向量接口 (#3508) * dev分支解决pydantic版本冲突问题,增加ollama配置,支持ollama会话和向量接口 1、因dev版本的pydantic升级到了v2版本,由于在class History(BaseModel)中使用了from server.pydantic_v1,而fastapi的引用已变为pydantic的v2版本,所以fastapi用v2版本去校验用v1版本定义的对象,当会话历史histtory不为空的时候,会报错:TypeError: BaseModel.validate() takes 2 positional arguments but 3 were given。经测试,解方法为在class History(BaseModel)中也使用v2版本即可; 2、配置文件参照其它平台配置,增加了ollama平台相关配置,会话模型用户可根据实际情况自行添加,向量模型目前支持nomic-embed-text(必须升级ollama到0.1.29以上)。 3、因ollama官方只在会话部分对openai api做了兼容,向量api暂未适配,好在langchain官方库支持OllamaEmbeddings,因而在get_Embeddings方法中添加了相关支持代码。 * 修复 pydantic 升级到 v2 后 DocumentWithVsID 和 /v1/embeddings 兼容性问题 --------- Co-authored-by: srszzw <srszzw@163.com> Co-authored-by: liunux4odoo <liunux@qq.com> * 对python的要求降级到py38 * fix bugs; make poetry using tsinghua mirror of pypi * update gitignore; remove unignored files * update wiki sub module * 20240326 * 20240326 * qqqq * 删除历史文件 * 移动项目模块 * update .gitignore; fix model version error in api_schemas * 封装ModelManager * - 重写 tool 部分: (#3553) - 简化 tool 的定义方式 - 所有 tool 和 tool_config 支持热加载 - 修复:json_schema_extra warning * 使用yaml加载用户配置适配器 * 格式化代码 * 格式化 * 优化工具定义;添加 openai 兼容的统一 chat 接口 (#3570) - 修复: - Qwen Agent 的 OutputParser 不再抛出异常,遇到非 COT 文本直接返回 - CallbackHandler 正确处理工具调用信息 - 重写 tool 定义方式: - 添加 regist_tool 简化 tool 定义: - 可以指定一个用户友好的名称 - 自动将函数的 __doc__ 作为 tool.description - 支持用 Field 定义参数,不再需要额外定义 ModelSchema - 添加 BaseToolOutput 封装 tool 返回结果,以便同时获取原始值、给LLM的字符串值 - 支持工具热加载(有待测试) - 增加 openai 兼容的统一 chat 接口,通过 tools/tool_choice/extra_body 不同参数组合支持: - Agent 对话 - 指定工具调用(如知识库RAG) - LLM 对话 - 根据后端功能更新 webui * 修复:search_local_knowledge_base 工具返回值错误;/tools 路由错误;webui 中“正在思考”一直显示 (#3571) * 添加 openai 兼容的 files 接口 (#3573) * 使用BootstrapWebBuilder适配RESTFulOpenAIBootstrapBaseWeb加载 * 格式化和代码检查说明 * 模型列表适配 * make format * chat_completions接口报文适配 * make format * xinference 插件示例 * 一些默认参数 * exec path fix * 解决ollama部署的qwen,执行agent,返回的json格式不正确问题。 * provider_configuration.py 查询所有的平台信息,包含计费策略和配置schema_validators(参数必填信息校验规则) /workspaces/current/model-providers 查询平台模型分类的详细默认信息,包含了模型类型,模型参数,模型状态 workspaces/current/models/model-types/{model_type} * 开发手册 * 兼容model_providers,集成webui及API中平台配置的初始化 (#3625) * provider_configuration init of MODEL_PLATFORMS * 开发手册 * 兼容model_providers,集成webui及API中平台配置的初始化 * Dev model providers (#3628) * gemini 初始化参数问题 * gemini 同步工具调用 * embedding convert endpoint * 修复 --api -w命令 * /v1/models 接口返回值由 List[Model] 改为 {'data': List[Model]},兼容最新版 xinference * 3.8兼容 (#3769) * 增加使用说明 * 3.8兼容性配置 * fix * formater * 不同平台兼容测试用例 * embedding兼容 * 增加日志信息 * pip源仓库设置,一些版本问题,启动说明 配置说明 (#3854) * 仓库设置,一些版本问题 * pip源仓库设置,一些版本问题,启动说明 * 配置说明 * 泛型标记错误 (#3855) * 仓库设置,一些版本问题 * pip源仓库设置,一些版本问题,启动说明 * 配置说明 * 发布的依赖信息 * 泛型标记错误 * 泛型标记错误 * CICD github action build publish pypi、Release Tag (#3886) * 测试用例 * CICD 流程 * CICD 流程 * CICD 流程 * 一些agent数据处理的问题,model_runtime模块的说明文档 (#3943) * 一些agent数据出来的问题 * Changes: - Translated and updated the Model Runtime documentation to reflect the latest changes and features. - Clarified the decoupling benefits of the Model Runtime module from the Chatchat service. - Removed outdated information regarding the model configuration storage module. - Detailed the retained functionalities post-removal of the Dify configuration page. - Provided a comprehensive overview of the Model Runtime's three-layered structure. - Included the status of the `fetch-from-remote` feature and its non-implementation in Dify. - Added instructions for custom service provider model capabilities. * - 新功能 (#3944) - streamlit 更新到 1.34,webui 支持 Dialog 操作 - streamlit-chatbox 更新到 1.1.12,更好的多会话支持 - 开发者 - 在 API 中增加项目图片路由(/img/{file_name}),方便前端使用 * 修改包名 * 修改包信息 * ollama配置解析问题 * 用户配置动态加载 (#3951) * version = "0.3.0.20240506" * version = "0.3.0.20240506" * version = "0.3.0.20240506" * version = "0.3.0.20240506" * 启动说明 * 一些bug * 修复了一些配置重载的bug * 配置的加载行为修改 * 配置的加载行为修改 * agent代码优化 * ollama 代码升级,使用openai协议 * 支持deepseek客户端 * contributing (#4043) * 添加了贡献说明 docs/contributing,包含了一些代码仓库说明和开发规范,以及在model_providers下面编写了一些单元测试的示例 * 关于providers的配置说明 * python3.8兼容 * python3.8兼容 * ollama兼容 * ollama兼容 * 一些兼容 pydantic<3,>=1.9.0 的代码, * 一些兼容 pydantic<3,>=1.9.0 model_config 的代码, * make format * test * 更新版本 * get_img_base64 * get_img_base64 * get_img_base64 * get_img_base64 * get_img_base64 * 统一模型类型编码 * 向量处理问题 * 优化目录结构 (#4058) * 优化目录结构 * 修改一些测试问题 --------- Co-authored-by: glide-the <2533736852@qq.com> * repositories * 调整日志 * 调整日志zdf * 增加可选依赖extras * feat:Added some documentation. (#4085) * feat:Added some documentation. * feat:Added some documentation. * feat:Added some documentation. --------- Co-authored-by: yuehuazhang <yuehuazhang@tencent.com> * fix code.md typos * fix chatchat-server/pyproject.toml typos * feat:README (#4118) Co-authored-by: yuehuazhang <yuehuazhang@tencent.com> * 初始化数据库集成model_providers * 关闭守护进程 * 1、修改知识库列表接口,返回全量属性字段,同时修改受影响的相关代码。 (#4119) 2、run_in_process_pool改为run_in_thread_pool,解决兼容性问题。 3、poetry配置文件修复。 * 动态更新Prompt中的知识库描述信息,使大模型更容易判断使用哪个知识库。 (#4121) * 1、修改知识库列表接口,返回全量属性字段,同时修改受影响的相关代码。 2、run_in_process_pool改为run_in_thread_pool,解决兼容性问题。 3、poetry配置文件修复。 * 1、动态更新Prompt中的知识库描述信息,使大模型更容易判断使用哪个知识库。 * fix: 补充 xinference 配置信息 (#4123) * feat:README * feat:补充 xinference 平台 llm 和 embedding 模型配置. --------- Co-authored-by: yuehuazhang <yuehuazhang@tencent.com> * 知识库工具的下拉列表改为动态获取,不必重启服务。 (#4126) * 1、知识库工具的下拉列表改为动态获取,不必重启服务。 * update README and imgs * update README and imgs * update README and imgs * update README and imgs * 修改安装说明描述问题 * make formater * 更新版本"0.3.0.20240606 * Update code.md * 优化知识库相关功能 (#4153) - 新功能 - pypi 包新增 chatchat-kb 命令脚本,对应 init_database.py 功能 - 开发者 - _model_config.py 中默认包含 xinference 配置项 - 所有涉及向量库的操作,前置检查当前 Embed 模型是否可用 - /knowledge_base/create_knowledge_base 接口增加 kb_info 参数 - /knowledge_base/list_files 接口返回所有数据库字段,而非文件名称列表 - 修正 xinference 模型管理脚本 * 消除警告 * 一些依赖问题 * 增加text2sql工具,支持特定表、智能判定表,支持对表名进行额外说明 (#4154) * 1、增加text2sql工具,支持特定表、智能判定表,支持对表名进行额外说明 * 支持SQLAlchemy大部分数据库、新增read-only模式,提高安全性、增加text2sql使用建议 (#4155) * 1、修改text2sql连接配置,支持SQLAlchemy大部分数据库; 2、新增read-only模式,若有数据库写保护需求,会从大模型判断、SQLAlchemy拦截器两个层面进行写拦截,提高安全性; 3、增加text2sql使用建议; * dotenv * dotenv 配置 * 用户工作空间操作 (#4156) 工作空间的配置预设,提供ConfigBasic建造方法产生实例。 该类的实例对象用于存储工作空间的配置信息,如工作空间的路径等 工作空间的配置信息存储在用户的家目录下的.config/chatchat/workspace/workspace_config.json文件中。 注意:不存在则读取默认 提供了操作入口 指令` chatchat-config` 工作空间配置 options: ``` -h, --help show this help message and exit -v {true,false}, --verbose {true,false} 是否开启详细日志 -d DATA, --data DATA 数据存放路径 -f FORMAT, --format FORMAT 日志格式 --clear 清除配置 ``` * 配置路径问题 * fix faiss_cache bug * Feature(File RAG): add file_rag in chatchat-server, add ensemble retriever and vectorstore retriever. * Feature(File RAG): add file_rag in chatchat-server, add ensemble retriever and vectorstore retriever. * fix xinference manager bug * Fix(File RAG): use jieba instead of cutword * Fix(File RAG): update kb_doc_api.py * 工作空间的配置预设,提供ConfigBasic建造 实例。 (#4158) - ConfigWorkSpace接口说明 ```text ConfigWorkSpace是一个配置工作空间的抽象类,提供基础的配置信息存储和读取功能。 提供ConfigFactory建造方法产生实例。 该类的实例对象用于存储工作空间的配置信息,如工作空间的路径等 工作空间的配置信息存储在用户的家目录下的.chatchat/workspace/workspace_config.json文件中。 注意:不存在则读取默认 ``` * 编写配置说明 * 编写配置说明 --------- Co-authored-by: liunux4odoo <41217877+liunux4odoo@users.noreply.github.com> Co-authored-by: glide-the <2533736852@qq.com> Co-authored-by: tonysong <tonysong@digitalgd.com.cn> Co-authored-by: songpb <songpb@gmail.com> Co-authored-by: showmecodett <showmecodett@gmail.com> Co-authored-by: zR <2448370773@qq.com> Co-authored-by: zqt <1178747941@qq.com> Co-authored-by: zqt996 <67185303+zqt996@users.noreply.github.com> Co-authored-by: fengyaojie <fengyaojie@xdf.cn> Co-authored-by: Hans WAN <hanswan@tom.com> Co-authored-by: thinklover <thinklover@gmail.com> Co-authored-by: liunux4odoo <liunux@qq.com> Co-authored-by: xucailiang <74602715+xucailiang@users.noreply.github.com> Co-authored-by: XuCai <liangxc@akulaku.com> Co-authored-by: dignfei <913015993@qq.com> Co-authored-by: Leb <khazzz1c@gmail.com> Co-authored-by: Sumkor <sumkor@foxmail.com> Co-authored-by: panhong <381500590@qq.com> Co-authored-by: srszzw <741992282@qq.com> Co-authored-by: srszzw <srszzw@163.com> Co-authored-by: yuehua-s <41819795+yuehua-s@users.noreply.github.com> Co-authored-by: yuehuazhang <yuehuazhang@tencent.com>
433 lines
14 KiB
Python
433 lines
14 KiB
Python
from abc import ABC, abstractmethod
|
||
|
||
import operator
|
||
import os
|
||
from pathlib import Path
|
||
from langchain.docstore.document import Document
|
||
|
||
from typing import List, Union, Dict, Optional, Tuple
|
||
|
||
from chatchat.configs import (kbs_config, VECTOR_SEARCH_TOP_K, SCORE_THRESHOLD,
|
||
DEFAULT_EMBEDDING_MODEL, KB_INFO, logger)
|
||
from chatchat.server.db.models.knowledge_base_model import KnowledgeBaseSchema
|
||
from chatchat.server.db.repository.knowledge_base_repository import (
|
||
add_kb_to_db, delete_kb_from_db, list_kbs_from_db, kb_exists,
|
||
load_kb_from_db, get_kb_detail,
|
||
)
|
||
from chatchat.server.db.repository.knowledge_file_repository import (
|
||
add_file_to_db, delete_file_from_db, delete_files_from_db, file_exists_in_db,
|
||
count_files_from_db, list_files_from_db, get_file_detail, delete_file_from_db,
|
||
list_docs_from_db,
|
||
)
|
||
from chatchat.server.knowledge_base.utils import (
|
||
get_kb_path, get_doc_path, KnowledgeFile,
|
||
list_kbs_from_folder, list_files_from_folder,
|
||
)
|
||
from chatchat.server.knowledge_base.model.kb_document_model import DocumentWithVSId
|
||
from chatchat.server.utils import check_embed_model as _check_embed_model
|
||
|
||
class SupportedVSType:
|
||
FAISS = 'faiss'
|
||
MILVUS = 'milvus'
|
||
DEFAULT = 'default'
|
||
ZILLIZ = 'zilliz'
|
||
PG = 'pg'
|
||
ES = 'es'
|
||
CHROMADB = 'chromadb'
|
||
|
||
|
||
class KBService(ABC):
|
||
|
||
def __init__(self,
|
||
knowledge_base_name: str,
|
||
kb_info: str = None,
|
||
embed_model: str = DEFAULT_EMBEDDING_MODEL,
|
||
):
|
||
self.kb_name = knowledge_base_name
|
||
self.kb_info = kb_info or KB_INFO.get(knowledge_base_name, f"关于{knowledge_base_name}的知识库")
|
||
self.embed_model = embed_model
|
||
self.kb_path = get_kb_path(self.kb_name)
|
||
self.doc_path = get_doc_path(self.kb_name)
|
||
self.do_init()
|
||
|
||
def __repr__(self) -> str:
|
||
return f"{self.kb_name} @ {self.embed_model}"
|
||
|
||
def save_vector_store(self):
|
||
'''
|
||
保存向量库:FAISS保存到磁盘,milvus保存到数据库。PGVector暂未支持
|
||
'''
|
||
pass
|
||
|
||
def check_embed_model(self, error_msg: str) -> bool:
|
||
if not _check_embed_model(self.embed_model):
|
||
logger.error(error_msg, exc_info=True)
|
||
return False
|
||
else:
|
||
return True
|
||
|
||
def create_kb(self):
|
||
"""
|
||
创建知识库
|
||
"""
|
||
if not os.path.exists(self.doc_path):
|
||
os.makedirs(self.doc_path)
|
||
|
||
status = add_kb_to_db(self.kb_name, self.kb_info, self.vs_type(), self.embed_model)
|
||
|
||
if status:
|
||
self.do_create_kb()
|
||
return status
|
||
|
||
def clear_vs(self):
|
||
"""
|
||
删除向量库中所有内容
|
||
"""
|
||
self.do_clear_vs()
|
||
status = delete_files_from_db(self.kb_name)
|
||
return status
|
||
|
||
def drop_kb(self):
|
||
"""
|
||
删除知识库
|
||
"""
|
||
self.do_drop_kb()
|
||
status = delete_kb_from_db(self.kb_name)
|
||
return status
|
||
|
||
def add_doc(self, kb_file: KnowledgeFile, docs: List[Document] = [], **kwargs):
|
||
"""
|
||
向知识库添加文件
|
||
如果指定了docs,则不再将文本向量化,并将数据库对应条目标为custom_docs=True
|
||
"""
|
||
if not self.check_embed_model(f"could not add docs because failed to access embed model."):
|
||
return False
|
||
|
||
if docs:
|
||
custom_docs = True
|
||
else:
|
||
docs = kb_file.file2text()
|
||
custom_docs = False
|
||
|
||
if docs:
|
||
# 将 metadata["source"] 改为相对路径
|
||
for doc in docs:
|
||
try:
|
||
doc.metadata.setdefault("source", kb_file.filename)
|
||
source = doc.metadata.get("source", "")
|
||
if os.path.isabs(source):
|
||
rel_path = Path(source).relative_to(self.doc_path)
|
||
doc.metadata["source"] = str(rel_path.as_posix().strip("/"))
|
||
except Exception as e:
|
||
print(f"cannot convert absolute path ({source}) to relative path. error is : {e}")
|
||
self.delete_doc(kb_file)
|
||
doc_infos = self.do_add_doc(docs, **kwargs)
|
||
status = add_file_to_db(kb_file,
|
||
custom_docs=custom_docs,
|
||
docs_count=len(docs),
|
||
doc_infos=doc_infos)
|
||
else:
|
||
status = False
|
||
return status
|
||
|
||
def delete_doc(self, kb_file: KnowledgeFile, delete_content: bool = False, **kwargs):
|
||
"""
|
||
从知识库删除文件
|
||
"""
|
||
self.do_delete_doc(kb_file, **kwargs)
|
||
status = delete_file_from_db(kb_file)
|
||
if delete_content and os.path.exists(kb_file.filepath):
|
||
os.remove(kb_file.filepath)
|
||
return status
|
||
|
||
def update_info(self, kb_info: str):
|
||
"""
|
||
更新知识库介绍
|
||
"""
|
||
self.kb_info = kb_info
|
||
status = add_kb_to_db(self.kb_name, self.kb_info, self.vs_type(), self.embed_model)
|
||
return status
|
||
|
||
def update_doc(self, kb_file: KnowledgeFile, docs: List[Document] = [], **kwargs):
|
||
"""
|
||
使用content中的文件更新向量库
|
||
如果指定了docs,则使用自定义docs,并将数据库对应条目标为custom_docs=True
|
||
"""
|
||
if not self.check_embed_model(f"could not update docs because failed to access embed model."):
|
||
return False
|
||
|
||
if os.path.exists(kb_file.filepath):
|
||
self.delete_doc(kb_file, **kwargs)
|
||
return self.add_doc(kb_file, docs=docs, **kwargs)
|
||
|
||
def exist_doc(self, file_name: str):
|
||
return file_exists_in_db(KnowledgeFile(knowledge_base_name=self.kb_name,
|
||
filename=file_name))
|
||
|
||
def list_files(self):
|
||
return list_files_from_db(self.kb_name)
|
||
|
||
def count_files(self):
|
||
return count_files_from_db(self.kb_name)
|
||
|
||
def search_docs(self,
|
||
query: str,
|
||
top_k: int = VECTOR_SEARCH_TOP_K,
|
||
score_threshold: float = SCORE_THRESHOLD,
|
||
) ->List[Document]:
|
||
if not self.check_embed_model(f"could not search docs because failed to access embed model."):
|
||
return []
|
||
docs = self.do_search(query, top_k, score_threshold)
|
||
return docs
|
||
|
||
def get_doc_by_ids(self, ids: List[str]) -> List[Document]:
|
||
return []
|
||
|
||
def del_doc_by_ids(self, ids: List[str]) -> bool:
|
||
raise NotImplementedError
|
||
|
||
def update_doc_by_ids(self, docs: Dict[str, Document]) -> bool:
|
||
'''
|
||
传入参数为: {doc_id: Document, ...}
|
||
如果对应 doc_id 的值为 None,或其 page_content 为空,则删除该文档
|
||
'''
|
||
if not self.check_embed_model(f"could not update docs because failed to access embed model."):
|
||
return False
|
||
|
||
self.del_doc_by_ids(list(docs.keys()))
|
||
docs = []
|
||
ids = []
|
||
for k, v in docs.items():
|
||
if not v or not v.page_content.strip():
|
||
continue
|
||
ids.append(k)
|
||
docs.append(v)
|
||
self.do_add_doc(docs=docs, ids=ids)
|
||
return True
|
||
|
||
def list_docs(self, file_name: str = None, metadata: Dict = {}) -> List[DocumentWithVSId]:
|
||
'''
|
||
通过file_name或metadata检索Document
|
||
'''
|
||
doc_infos = list_docs_from_db(kb_name=self.kb_name, file_name=file_name, metadata=metadata)
|
||
docs = []
|
||
for x in doc_infos:
|
||
doc_info = self.get_doc_by_ids([x["id"]])[0]
|
||
if doc_info is not None:
|
||
# 处理非空的情况
|
||
doc_with_id = DocumentWithVSId(**doc_info.dict(), id=x["id"])
|
||
docs.append(doc_with_id)
|
||
else:
|
||
# 处理空的情况
|
||
# 可以选择跳过当前循环迭代或执行其他操作
|
||
pass
|
||
return docs
|
||
|
||
@abstractmethod
|
||
def do_create_kb(self):
|
||
"""
|
||
创建知识库子类实自己逻辑
|
||
"""
|
||
pass
|
||
|
||
@staticmethod
|
||
def list_kbs_type():
|
||
return list(kbs_config.keys())
|
||
|
||
@classmethod
|
||
def list_kbs(cls):
|
||
return list_kbs_from_db()
|
||
|
||
def exists(self, kb_name: str = None):
|
||
kb_name = kb_name or self.kb_name
|
||
return kb_exists(kb_name)
|
||
|
||
@abstractmethod
|
||
def vs_type(self) -> str:
|
||
pass
|
||
|
||
@abstractmethod
|
||
def do_init(self):
|
||
pass
|
||
|
||
@abstractmethod
|
||
def do_drop_kb(self):
|
||
"""
|
||
删除知识库子类实自己逻辑
|
||
"""
|
||
pass
|
||
|
||
@abstractmethod
|
||
def do_search(self,
|
||
query: str,
|
||
top_k: int,
|
||
score_threshold: float,
|
||
) -> List[Tuple[Document, float]]:
|
||
"""
|
||
搜索知识库子类实自己逻辑
|
||
"""
|
||
pass
|
||
|
||
@abstractmethod
|
||
def do_add_doc(self,
|
||
docs: List[Document],
|
||
**kwargs,
|
||
) -> List[Dict]:
|
||
"""
|
||
向知识库添加文档子类实自己逻辑
|
||
"""
|
||
pass
|
||
|
||
@abstractmethod
|
||
def do_delete_doc(self,
|
||
kb_file: KnowledgeFile):
|
||
"""
|
||
从知识库删除文档子类实自己逻辑
|
||
"""
|
||
pass
|
||
|
||
@abstractmethod
|
||
def do_clear_vs(self):
|
||
"""
|
||
从知识库删除全部向量子类实自己逻辑
|
||
"""
|
||
pass
|
||
|
||
|
||
class KBServiceFactory:
|
||
|
||
@staticmethod
|
||
def get_service(kb_name: str,
|
||
vector_store_type: Union[str, SupportedVSType],
|
||
embed_model: str = DEFAULT_EMBEDDING_MODEL,
|
||
kb_info: str = None,
|
||
) -> KBService:
|
||
if isinstance(vector_store_type, str):
|
||
vector_store_type = getattr(SupportedVSType, vector_store_type.upper())
|
||
params = {"knowledge_base_name": kb_name, "embed_model": embed_model, "kb_info": kb_info}
|
||
if SupportedVSType.FAISS == vector_store_type:
|
||
from chatchat.server.knowledge_base.kb_service.faiss_kb_service import FaissKBService
|
||
return FaissKBService(**params)
|
||
elif SupportedVSType.PG == vector_store_type:
|
||
from chatchat.server.knowledge_base.kb_service.pg_kb_service import PGKBService
|
||
return PGKBService(**params)
|
||
elif SupportedVSType.MILVUS == vector_store_type:
|
||
from chatchat.server.knowledge_base.kb_service.milvus_kb_service import MilvusKBService
|
||
return MilvusKBService(**params)
|
||
elif SupportedVSType.ZILLIZ == vector_store_type:
|
||
from chatchat.server.knowledge_base.kb_service.zilliz_kb_service import ZillizKBService
|
||
return ZillizKBService(**params)
|
||
elif SupportedVSType.DEFAULT == vector_store_type:
|
||
from chatchat.server.knowledge_base.kb_service.milvus_kb_service import MilvusKBService
|
||
return MilvusKBService(**params) # other milvus parameters are set in model_config.kbs_config
|
||
elif SupportedVSType.ES == vector_store_type:
|
||
from chatchat.server.knowledge_base.kb_service.es_kb_service import ESKBService
|
||
return ESKBService(**params)
|
||
elif SupportedVSType.CHROMADB == vector_store_type:
|
||
from chatchat.server.knowledge_base.kb_service.chromadb_kb_service import ChromaKBService
|
||
return ChromaKBService(**params)
|
||
elif SupportedVSType.DEFAULT == vector_store_type: # kb_exists of default kbservice is False, to make validation easier.
|
||
from chatchat.server.knowledge_base.kb_service.default_kb_service import DefaultKBService
|
||
return DefaultKBService(kb_name)
|
||
|
||
@staticmethod
|
||
def get_service_by_name(kb_name: str) -> KBService:
|
||
_, vs_type, embed_model = load_kb_from_db(kb_name)
|
||
if _ is None: # kb not in db, just return None
|
||
return None
|
||
return KBServiceFactory.get_service(kb_name, vs_type, embed_model)
|
||
|
||
@staticmethod
|
||
def get_default():
|
||
return KBServiceFactory.get_service("default", SupportedVSType.DEFAULT)
|
||
|
||
|
||
def get_kb_details() -> List[Dict]:
|
||
kbs_in_folder = list_kbs_from_folder()
|
||
kbs_in_db:List[KnowledgeBaseSchema] = KBService.list_kbs()
|
||
result = {}
|
||
|
||
for kb in kbs_in_folder:
|
||
result[kb] = {
|
||
"kb_name": kb,
|
||
"vs_type": "",
|
||
"kb_info": "",
|
||
"embed_model": "",
|
||
"file_count": 0,
|
||
"create_time": None,
|
||
"in_folder": True,
|
||
"in_db": False,
|
||
}
|
||
|
||
for kb_detail in kbs_in_db:
|
||
kb_detail=kb_detail.model_dump()
|
||
kb_name=kb_detail["kb_name"]
|
||
kb_detail["in_db"] = True
|
||
if kb_name in result:
|
||
result[kb_name].update(kb_detail)
|
||
else:
|
||
kb_detail["in_folder"] = False
|
||
result[kb_name] = kb_detail
|
||
|
||
|
||
data = []
|
||
for i, v in enumerate(result.values()):
|
||
v['No'] = i + 1
|
||
data.append(v)
|
||
|
||
return data
|
||
|
||
|
||
def get_kb_file_details(kb_name: str) -> List[Dict]:
|
||
kb = KBServiceFactory.get_service_by_name(kb_name)
|
||
if kb is None:
|
||
return []
|
||
|
||
files_in_folder = list_files_from_folder(kb_name)
|
||
files_in_db = kb.list_files()
|
||
result = {}
|
||
|
||
for doc in files_in_folder:
|
||
result[doc] = {
|
||
"kb_name": kb_name,
|
||
"file_name": doc,
|
||
"file_ext": os.path.splitext(doc)[-1],
|
||
"file_version": 0,
|
||
"document_loader": "",
|
||
"docs_count": 0,
|
||
"text_splitter": "",
|
||
"create_time": None,
|
||
"in_folder": True,
|
||
"in_db": False,
|
||
}
|
||
lower_names = {x.lower(): x for x in result}
|
||
for doc in files_in_db:
|
||
doc_detail = get_file_detail(kb_name, doc)
|
||
if doc_detail:
|
||
doc_detail["in_db"] = True
|
||
if doc.lower() in lower_names:
|
||
result[lower_names[doc.lower()]].update(doc_detail)
|
||
else:
|
||
doc_detail["in_folder"] = False
|
||
result[doc] = doc_detail
|
||
|
||
data = []
|
||
for i, v in enumerate(result.values()):
|
||
v['No'] = i + 1
|
||
data.append(v)
|
||
|
||
return data
|
||
|
||
|
||
def score_threshold_process(score_threshold, k, docs):
|
||
if score_threshold is not None:
|
||
cmp = (
|
||
operator.le
|
||
)
|
||
docs = [
|
||
(doc, similarity)
|
||
for doc, similarity in docs
|
||
if cmp(similarity, score_threshold)
|
||
]
|
||
return docs[:k]
|