mirror of
https://github.com/RYDE-WORK/Langchain-Chatchat.git
synced 2026-01-28 01:33:17 +08:00
* publish 0.2.10 (#2797) 新功能: - 优化 PDF 文件的 OCR,过滤无意义的小图片 by @liunux4odoo #2525 - 支持 Gemini 在线模型 by @yhfgyyf #2630 - 支持 GLM4 在线模型 by @zRzRzRzRzRzRzR - elasticsearch更新https连接 by @xldistance #2390 - 增强对PPT、DOC知识库文件的OCR识别 by @596192804 #2013 - 更新 Agent 对话功能 by @zRzRzRzRzRzRzR - 每次创建对象时从连接池获取连接,避免每次执行方法时都新建连接 by @Lijia0 #2480 - 实现 ChatOpenAI 判断token有没有超过模型的context上下文长度 by @glide-the - 更新运行数据库报错和项目里程碑 by @zRzRzRzRzRzRzR #2659 - 更新配置文件/文档/依赖 by @imClumsyPanda @zRzRzRzRzRzRzR - 添加日文版 readme by @eltociear #2787 修复: - langchain 更新后,PGVector 向量库连接错误 by @HALIndex #2591 - Minimax's model worker 错误 by @xyhshen - ES库无法向量检索.添加mappings创建向量索引 by MSZheng20 #2688 * Update README.md * Add files via upload * Update README.md * 修复PDF旋转的BUG * Support Chroma * perf delete unused import * 忽略测试代码 * 更新文件 * API前端丢失问题解决 * 更新了chromadb的打印的符号 * autodl代号错误 * Update README.md * Update README.md * Update README.md * 修复milvus相关bug * 支持星火3.5模型 * 修复es 知识库查询bug (#2848) * 修复es 知识库查询bug (#2848) * 更新zhipuai请求方式 * 增加对 .htm 扩展名的显式支持 * 更新readme * Docker镜像制作与K8S YAML部署操作说明 (#2892) * Dev (#2280) * 修复Azure 不设置Max token的bug * 重写agent 1. 修改Agent实现方式,支持多参数,仅剩 ChatGLM3-6b和 OpenAI GPT4 支持,剩余模型将在暂时缺席Agent功能 2. 删除agent_chat 集成到llm_chat中 3. 重写大部分工具,适应新Agent * 更新架构 * 删除web_chat,自动融合 * 移除所有聊天,都变成Agent控制 * 更新配置文件 * 更新配置模板和提示词 * 更改参数选择bug * 修复模型选择的bug * 更新一些内容 * 更新多模态 语音 视觉的内容 1. 更新本地模型语音 视觉多模态功能并设置了对应工具 * 支持多模态Grounding 1. 美化了chat的代码 2. 支持视觉工具输出Grounding任务 3. 完善工具调用的流程 * 支持XPU,修改了glm3部分agent * 添加 qwen agent * 对其ChatGLM3-6B与Qwen-14B * fix callback handler * 更新Agent工具返回 * fix: LLMChain no output when no tools selected * 跟新了langchain 0.1.x需要的依赖和修改的代码 * 更新chatGLM3 langchain0.1.x Agent写法 * 按照 langchain 0.1 重写 qwen agent * 修复 callback 无效的问题 * 添加文生图工具 * webui 支持文生图 * 集成openai plugins插件 * 删除fastchat的配置 * 增加openai插件 * 集成openai plugins插件 * 更新模型执行列表和今晚修改的内容 * 集成openai_plugins/imitater插件 * 集成openai_plugins/imitater插件 * 集成openai_plugins/imitater插件 * 减少错误的显示 * 标准配置 * vllm参数配置 * 增加智谱插件 * 删除本地fschat配置 * 删除本地fschat配置,pydantic升级到2 * 删除本地fschat workers * openai-plugins-list.json * 升级agent,pydantic升级到2 * fix model_config是系统关键词问题 * embeddings模块集成openai plugins插件,使用统一api调用 * loom模型服务update_store更新逻辑 * 集成LOOM在线embedding业务 * 本地知识库搜索字段修改 * 知识库在线api接入点配置在线api接入点配置更新逻辑 * Update model_config.py.example * 修改模型配置方式,所有模型以 openai 兼容框架的形式接入,chatchat 自身不再加载模型。 改变 Embeddings 模型改为使用框架 API,不再手动加载,删除自定义 Embeddings Keyword 代码 修改依赖文件,移除 torch transformers 等重依赖 暂时移出对 loom 的集成 后续: 1、优化目录结构 2、检查合并中有无被覆盖的 0.2.10 内容 * move document_loaders & text_splitter under server * make torch & transformers optional import pydantic Model & Field from langchain.pydantic_v1 instead of pydantic.v1 * - pydantic 限定为 v1,并统一项目中所有 pydantic 导入路径,为以后升级 v2 做准备 - 重构 api.py: - 按模块划分为不同的 router - 添加 openai 兼容的转发接口,项目默认使用该接口以实现模型负载均衡 - 添加 /tools 接口,可以获取/调用编写的 agent tools - 移除所有 EmbeddingFuncAdapter,统一改用 get_Embeddings - 待办: - /chat/chat 接口改为 openai 兼容 - 添加 /chat/kb_chat 接口,openai 兼容 - 改变 ntlk/knowledge_base/logs 等数据目录位置 * 移除 llama-index 依赖;修复 /v1/models 错误 * 原因:windows下启动失败提示补充python-multipart包 (#3184) 改动:requirements添加python-multipart==0.0.9 版本:0.0.9 Requires: Python >=3.8 Co-authored-by: XuCai <liangxc@akulaku.com> * 添加 xinference 本地模型和自定义模型配置 UI: streamlit run model_loaders/xinference_manager.py * update xinference manager ui * fix merge conflict * model_config 中补充 oneapi 默认在线模型;/v1/models 接口支持 oneapi 平台,统一返回模型列表 * 重写 calculate 工具 * 调整根目录结构,kb/logs/media/nltk_data 移动到专用数据目录(可配置,默认 data)。注意知识库文件要做相应移动 * update kb_config.py.example * 优化 ES 知识库 - 开发者 - get_OpenAIClient 的 local_wrap 默认值改为 False,避免 API 服务未启动导致其它功能受阻(如Embeddings) - 修改 ES 知识库服务: - 检索策略改为 ApproxRetrievalStrategy - 设置 timeout 为 60, 避免文档过多导致 ConnecitonTimeout Error - 修改 LocalAIEmbeddings,使用多线程进行 embed_texts,效果不明显,瓶颈可能主要在提供 Embedding 的服务器上 * 修复glm3 agent被注释的agent会话文本结构解析代码 看起来输出的文本占位符如下,目前解析代码是有问题的 Thought <|assistant|> Action\r ```python tool_call(action_input) ```<|observation|> * make qwen agent work with langchain>=0.1 (#3228) * make xinference model manager support xinference 0.9.x * 使用多进程提高导入知识库的速度 (#3276) * xinference的代码 先传 我后面来改 * Delete server/xinference directory * Create khazic * diiii diii * Revert "xinference的代码" * fix markdown header split (#1825) (#3324) * dify model_providers configuration This module provides the interface for invoking and authenticating various models, and offers Dify a unified information and credentials form rule for model providers. * fix merge conflict: langchain Embeddings not imported in server.utils * 添加 react 编写的新版 WEBUI (#3417) * feat:提交前端代码 * feat:提交logo样式切换 * feat:替换avatar、部分位置icon、chatchat相关说明、git链接、Wiki链接、关于、设置、反馈与建议等功能,关闭lobehub自检更新功能 * fix:移除多余代码 --------- Co-authored-by: liunux4odoo <41217877+liunux4odoo@users.noreply.github.com> * model_providers bootstrap * model_providers bootstrap * update to pydantic v2 (#3486) * 使用poetry管理项目 * 使用poetry管理项目 * dev分支解决pydantic版本冲突问题,增加ollama配置,支持ollama会话和向量接口 (#3508) * dev分支解决pydantic版本冲突问题,增加ollama配置,支持ollama会话和向量接口 1、因dev版本的pydantic升级到了v2版本,由于在class History(BaseModel)中使用了from server.pydantic_v1,而fastapi的引用已变为pydantic的v2版本,所以fastapi用v2版本去校验用v1版本定义的对象,当会话历史histtory不为空的时候,会报错:TypeError: BaseModel.validate() takes 2 positional arguments but 3 were given。经测试,解方法为在class History(BaseModel)中也使用v2版本即可; 2、配置文件参照其它平台配置,增加了ollama平台相关配置,会话模型用户可根据实际情况自行添加,向量模型目前支持nomic-embed-text(必须升级ollama到0.1.29以上)。 3、因ollama官方只在会话部分对openai api做了兼容,向量api暂未适配,好在langchain官方库支持OllamaEmbeddings,因而在get_Embeddings方法中添加了相关支持代码。 * 修复 pydantic 升级到 v2 后 DocumentWithVsID 和 /v1/embeddings 兼容性问题 --------- Co-authored-by: srszzw <srszzw@163.com> Co-authored-by: liunux4odoo <liunux@qq.com> * 对python的要求降级到py38 * fix bugs; make poetry using tsinghua mirror of pypi * update gitignore; remove unignored files * update wiki sub module * 20240326 * 20240326 * qqqq * 删除历史文件 * 移动项目模块 * update .gitignore; fix model version error in api_schemas * 封装ModelManager * - 重写 tool 部分: (#3553) - 简化 tool 的定义方式 - 所有 tool 和 tool_config 支持热加载 - 修复:json_schema_extra warning * 使用yaml加载用户配置适配器 * 格式化代码 * 格式化 * 优化工具定义;添加 openai 兼容的统一 chat 接口 (#3570) - 修复: - Qwen Agent 的 OutputParser 不再抛出异常,遇到非 COT 文本直接返回 - CallbackHandler 正确处理工具调用信息 - 重写 tool 定义方式: - 添加 regist_tool 简化 tool 定义: - 可以指定一个用户友好的名称 - 自动将函数的 __doc__ 作为 tool.description - 支持用 Field 定义参数,不再需要额外定义 ModelSchema - 添加 BaseToolOutput 封装 tool 返回结果,以便同时获取原始值、给LLM的字符串值 - 支持工具热加载(有待测试) - 增加 openai 兼容的统一 chat 接口,通过 tools/tool_choice/extra_body 不同参数组合支持: - Agent 对话 - 指定工具调用(如知识库RAG) - LLM 对话 - 根据后端功能更新 webui * 修复:search_local_knowledge_base 工具返回值错误;/tools 路由错误;webui 中“正在思考”一直显示 (#3571) * 添加 openai 兼容的 files 接口 (#3573) * 使用BootstrapWebBuilder适配RESTFulOpenAIBootstrapBaseWeb加载 * 格式化和代码检查说明 * 模型列表适配 * make format * chat_completions接口报文适配 * make format * xinference 插件示例 * 一些默认参数 * exec path fix * 解决ollama部署的qwen,执行agent,返回的json格式不正确问题。 * provider_configuration.py 查询所有的平台信息,包含计费策略和配置schema_validators(参数必填信息校验规则) /workspaces/current/model-providers 查询平台模型分类的详细默认信息,包含了模型类型,模型参数,模型状态 workspaces/current/models/model-types/{model_type} * 开发手册 * 兼容model_providers,集成webui及API中平台配置的初始化 (#3625) * provider_configuration init of MODEL_PLATFORMS * 开发手册 * 兼容model_providers,集成webui及API中平台配置的初始化 * Dev model providers (#3628) * gemini 初始化参数问题 * gemini 同步工具调用 * embedding convert endpoint * 修复 --api -w命令 * /v1/models 接口返回值由 List[Model] 改为 {'data': List[Model]},兼容最新版 xinference * 3.8兼容 (#3769) * 增加使用说明 * 3.8兼容性配置 * fix * formater * 不同平台兼容测试用例 * embedding兼容 * 增加日志信息 * pip源仓库设置,一些版本问题,启动说明 配置说明 (#3854) * 仓库设置,一些版本问题 * pip源仓库设置,一些版本问题,启动说明 * 配置说明 * 泛型标记错误 (#3855) * 仓库设置,一些版本问题 * pip源仓库设置,一些版本问题,启动说明 * 配置说明 * 发布的依赖信息 * 泛型标记错误 * 泛型标记错误 * CICD github action build publish pypi、Release Tag (#3886) * 测试用例 * CICD 流程 * CICD 流程 * CICD 流程 * 一些agent数据处理的问题,model_runtime模块的说明文档 (#3943) * 一些agent数据出来的问题 * Changes: - Translated and updated the Model Runtime documentation to reflect the latest changes and features. - Clarified the decoupling benefits of the Model Runtime module from the Chatchat service. - Removed outdated information regarding the model configuration storage module. - Detailed the retained functionalities post-removal of the Dify configuration page. - Provided a comprehensive overview of the Model Runtime's three-layered structure. - Included the status of the `fetch-from-remote` feature and its non-implementation in Dify. - Added instructions for custom service provider model capabilities. * - 新功能 (#3944) - streamlit 更新到 1.34,webui 支持 Dialog 操作 - streamlit-chatbox 更新到 1.1.12,更好的多会话支持 - 开发者 - 在 API 中增加项目图片路由(/img/{file_name}),方便前端使用 * 修改包名 * 修改包信息 * ollama配置解析问题 * 用户配置动态加载 (#3951) * version = "0.3.0.20240506" * version = "0.3.0.20240506" * version = "0.3.0.20240506" * version = "0.3.0.20240506" * 启动说明 * 一些bug * 修复了一些配置重载的bug * 配置的加载行为修改 * 配置的加载行为修改 * agent代码优化 * ollama 代码升级,使用openai协议 * 支持deepseek客户端 * contributing (#4043) * 添加了贡献说明 docs/contributing,包含了一些代码仓库说明和开发规范,以及在model_providers下面编写了一些单元测试的示例 * 关于providers的配置说明 * python3.8兼容 * python3.8兼容 * ollama兼容 * ollama兼容 * 一些兼容 pydantic<3,>=1.9.0 的代码, * 一些兼容 pydantic<3,>=1.9.0 model_config 的代码, * make format * test * 更新版本 * get_img_base64 * get_img_base64 * get_img_base64 * get_img_base64 * get_img_base64 * 统一模型类型编码 * 向量处理问题 * 优化目录结构 (#4058) * 优化目录结构 * 修改一些测试问题 --------- Co-authored-by: glide-the <2533736852@qq.com> * repositories * 调整日志 * 调整日志zdf * 增加可选依赖extras * feat:Added some documentation. (#4085) * feat:Added some documentation. * feat:Added some documentation. * feat:Added some documentation. --------- Co-authored-by: yuehuazhang <yuehuazhang@tencent.com> * fix code.md typos * fix chatchat-server/pyproject.toml typos * feat:README (#4118) Co-authored-by: yuehuazhang <yuehuazhang@tencent.com> * 初始化数据库集成model_providers * 关闭守护进程 * 1、修改知识库列表接口,返回全量属性字段,同时修改受影响的相关代码。 (#4119) 2、run_in_process_pool改为run_in_thread_pool,解决兼容性问题。 3、poetry配置文件修复。 * 动态更新Prompt中的知识库描述信息,使大模型更容易判断使用哪个知识库。 (#4121) * 1、修改知识库列表接口,返回全量属性字段,同时修改受影响的相关代码。 2、run_in_process_pool改为run_in_thread_pool,解决兼容性问题。 3、poetry配置文件修复。 * 1、动态更新Prompt中的知识库描述信息,使大模型更容易判断使用哪个知识库。 * fix: 补充 xinference 配置信息 (#4123) * feat:README * feat:补充 xinference 平台 llm 和 embedding 模型配置. --------- Co-authored-by: yuehuazhang <yuehuazhang@tencent.com> * 知识库工具的下拉列表改为动态获取,不必重启服务。 (#4126) * 1、知识库工具的下拉列表改为动态获取,不必重启服务。 * update README and imgs * update README and imgs * update README and imgs * update README and imgs * 修改安装说明描述问题 * make formater * 更新版本"0.3.0.20240606 * Update code.md * 优化知识库相关功能 (#4153) - 新功能 - pypi 包新增 chatchat-kb 命令脚本,对应 init_database.py 功能 - 开发者 - _model_config.py 中默认包含 xinference 配置项 - 所有涉及向量库的操作,前置检查当前 Embed 模型是否可用 - /knowledge_base/create_knowledge_base 接口增加 kb_info 参数 - /knowledge_base/list_files 接口返回所有数据库字段,而非文件名称列表 - 修正 xinference 模型管理脚本 * 消除警告 * 一些依赖问题 * 增加text2sql工具,支持特定表、智能判定表,支持对表名进行额外说明 (#4154) * 1、增加text2sql工具,支持特定表、智能判定表,支持对表名进行额外说明 * 支持SQLAlchemy大部分数据库、新增read-only模式,提高安全性、增加text2sql使用建议 (#4155) * 1、修改text2sql连接配置,支持SQLAlchemy大部分数据库; 2、新增read-only模式,若有数据库写保护需求,会从大模型判断、SQLAlchemy拦截器两个层面进行写拦截,提高安全性; 3、增加text2sql使用建议; * dotenv * dotenv 配置 * 用户工作空间操作 (#4156) 工作空间的配置预设,提供ConfigBasic建造方法产生实例。 该类的实例对象用于存储工作空间的配置信息,如工作空间的路径等 工作空间的配置信息存储在用户的家目录下的.config/chatchat/workspace/workspace_config.json文件中。 注意:不存在则读取默认 提供了操作入口 指令` chatchat-config` 工作空间配置 options: ``` -h, --help show this help message and exit -v {true,false}, --verbose {true,false} 是否开启详细日志 -d DATA, --data DATA 数据存放路径 -f FORMAT, --format FORMAT 日志格式 --clear 清除配置 ``` * 配置路径问题 * fix faiss_cache bug * Feature(File RAG): add file_rag in chatchat-server, add ensemble retriever and vectorstore retriever. * Feature(File RAG): add file_rag in chatchat-server, add ensemble retriever and vectorstore retriever. * fix xinference manager bug * Fix(File RAG): use jieba instead of cutword * Fix(File RAG): update kb_doc_api.py * 工作空间的配置预设,提供ConfigBasic建造 实例。 (#4158) - ConfigWorkSpace接口说明 ```text ConfigWorkSpace是一个配置工作空间的抽象类,提供基础的配置信息存储和读取功能。 提供ConfigFactory建造方法产生实例。 该类的实例对象用于存储工作空间的配置信息,如工作空间的路径等 工作空间的配置信息存储在用户的家目录下的.chatchat/workspace/workspace_config.json文件中。 注意:不存在则读取默认 ``` * 编写配置说明 * 编写配置说明 --------- Co-authored-by: liunux4odoo <41217877+liunux4odoo@users.noreply.github.com> Co-authored-by: glide-the <2533736852@qq.com> Co-authored-by: tonysong <tonysong@digitalgd.com.cn> Co-authored-by: songpb <songpb@gmail.com> Co-authored-by: showmecodett <showmecodett@gmail.com> Co-authored-by: zR <2448370773@qq.com> Co-authored-by: zqt <1178747941@qq.com> Co-authored-by: zqt996 <67185303+zqt996@users.noreply.github.com> Co-authored-by: fengyaojie <fengyaojie@xdf.cn> Co-authored-by: Hans WAN <hanswan@tom.com> Co-authored-by: thinklover <thinklover@gmail.com> Co-authored-by: liunux4odoo <liunux@qq.com> Co-authored-by: xucailiang <74602715+xucailiang@users.noreply.github.com> Co-authored-by: XuCai <liangxc@akulaku.com> Co-authored-by: dignfei <913015993@qq.com> Co-authored-by: Leb <khazzz1c@gmail.com> Co-authored-by: Sumkor <sumkor@foxmail.com> Co-authored-by: panhong <381500590@qq.com> Co-authored-by: srszzw <741992282@qq.com> Co-authored-by: srszzw <srszzw@163.com> Co-authored-by: yuehua-s <41819795+yuehua-s@users.noreply.github.com> Co-authored-by: yuehuazhang <yuehuazhang@tencent.com>
397 lines
18 KiB
Python
397 lines
18 KiB
Python
import json
|
||
import os
|
||
import urllib
|
||
from typing import List, Dict
|
||
|
||
from fastapi import File, Form, Body, Query, UploadFile
|
||
from fastapi.responses import FileResponse
|
||
from langchain.docstore.document import Document
|
||
from sse_starlette import EventSourceResponse
|
||
|
||
from chatchat.configs import (DEFAULT_VS_TYPE, DEFAULT_EMBEDDING_MODEL,
|
||
VECTOR_SEARCH_TOP_K, SCORE_THRESHOLD,
|
||
CHUNK_SIZE, OVERLAP_SIZE, ZH_TITLE_ENHANCE,
|
||
logger, log_verbose, )
|
||
from chatchat.server.db.repository.knowledge_file_repository import get_file_detail
|
||
from chatchat.server.knowledge_base.utils import (validate_kb_name, list_files_from_folder, get_file_path,
|
||
files2docs_in_thread, KnowledgeFile)
|
||
from chatchat.server.knowledge_base.kb_service.base import KBServiceFactory, get_kb_file_details
|
||
from chatchat.server.knowledge_base.model.kb_document_model import DocumentWithVSId
|
||
from chatchat.server.utils import BaseResponse, ListResponse, run_in_thread_pool, check_embed_model
|
||
|
||
|
||
def search_docs(
|
||
query: str = Body("", description="用户输入", examples=["你好"]),
|
||
knowledge_base_name: str = Body(..., description="知识库名称", examples=["samples"]),
|
||
top_k: int = Body(VECTOR_SEARCH_TOP_K, description="匹配向量数"),
|
||
score_threshold: float = Body(SCORE_THRESHOLD,
|
||
description="知识库匹配相关度阈值,取值范围在0-1之间,"
|
||
"SCORE越小,相关度越高,"
|
||
"取到1相当于不筛选,建议设置在0.5左右",
|
||
ge=0.0, le=1.0),
|
||
file_name: str = Body("", description="文件名称,支持 sql 通配符"),
|
||
metadata: dict = Body({}, description="根据 metadata 进行过滤,仅支持一级键"),
|
||
) -> List[Dict]:
|
||
kb = KBServiceFactory.get_service_by_name(knowledge_base_name)
|
||
data = []
|
||
if kb is not None:
|
||
if query:
|
||
docs = kb.search_docs(query, top_k, score_threshold)
|
||
# data = [DocumentWithVSId(**x[0].dict(), score=x[1], id=x[0].metadata.get("id")) for x in docs]
|
||
data = [DocumentWithVSId(**x.dict(), id=x.metadata.get("id")) for x in docs]
|
||
elif file_name or metadata:
|
||
data = kb.list_docs(file_name=file_name, metadata=metadata)
|
||
for d in data:
|
||
if "vector" in d.metadata:
|
||
del d.metadata["vector"]
|
||
return [x.dict() for x in data]
|
||
|
||
|
||
def list_files(
|
||
knowledge_base_name: str
|
||
) -> ListResponse:
|
||
if not validate_kb_name(knowledge_base_name):
|
||
return ListResponse(code=403, msg="Don't attack me", data=[])
|
||
|
||
knowledge_base_name = urllib.parse.unquote(knowledge_base_name)
|
||
kb = KBServiceFactory.get_service_by_name(knowledge_base_name)
|
||
if kb is None:
|
||
return ListResponse(code=404, msg=f"未找到知识库 {knowledge_base_name}", data=[])
|
||
else:
|
||
all_docs = get_kb_file_details(knowledge_base_name)
|
||
return ListResponse(data=all_docs)
|
||
|
||
|
||
def _save_files_in_thread(files: List[UploadFile],
|
||
knowledge_base_name: str,
|
||
override: bool):
|
||
"""
|
||
通过多线程将上传的文件保存到对应知识库目录内。
|
||
生成器返回保存结果:{"code":200, "msg": "xxx", "data": {"knowledge_base_name":"xxx", "file_name": "xxx"}}
|
||
"""
|
||
|
||
def save_file(file: UploadFile, knowledge_base_name: str, override: bool) -> dict:
|
||
'''
|
||
保存单个文件。
|
||
'''
|
||
try:
|
||
filename = file.filename
|
||
file_path = get_file_path(knowledge_base_name=knowledge_base_name, doc_name=filename)
|
||
data = {"knowledge_base_name": knowledge_base_name, "file_name": filename}
|
||
|
||
file_content = file.file.read() # 读取上传文件的内容
|
||
if (os.path.isfile(file_path)
|
||
and not override
|
||
and os.path.getsize(file_path) == len(file_content)
|
||
):
|
||
file_status = f"文件 {filename} 已存在。"
|
||
logger.warn(file_status)
|
||
return dict(code=404, msg=file_status, data=data)
|
||
|
||
if not os.path.isdir(os.path.dirname(file_path)):
|
||
os.makedirs(os.path.dirname(file_path))
|
||
with open(file_path, "wb") as f:
|
||
f.write(file_content)
|
||
return dict(code=200, msg=f"成功上传文件 {filename}", data=data)
|
||
except Exception as e:
|
||
msg = f"{filename} 文件上传失败,报错信息为: {e}"
|
||
logger.error(f'{e.__class__.__name__}: {msg}',
|
||
exc_info=e if log_verbose else None)
|
||
return dict(code=500, msg=msg, data=data)
|
||
|
||
params = [{"file": file, "knowledge_base_name": knowledge_base_name, "override": override} for file in files]
|
||
for result in run_in_thread_pool(save_file, params=params):
|
||
yield result
|
||
|
||
|
||
# def files2docs(files: List[UploadFile] = File(..., description="上传文件,支持多文件"),
|
||
# knowledge_base_name: str = Form(..., description="知识库名称", examples=["samples"]),
|
||
# override: bool = Form(False, description="覆盖已有文件"),
|
||
# save: bool = Form(True, description="是否将文件保存到知识库目录")):
|
||
# def save_files(files, knowledge_base_name, override):
|
||
# for result in _save_files_in_thread(files, knowledge_base_name=knowledge_base_name, override=override):
|
||
# yield json.dumps(result, ensure_ascii=False)
|
||
|
||
# def files_to_docs(files):
|
||
# for result in files2docs_in_thread(files):
|
||
# yield json.dumps(result, ensure_ascii=False)
|
||
|
||
|
||
def upload_docs(
|
||
files: List[UploadFile] = File(..., description="上传文件,支持多文件"),
|
||
knowledge_base_name: str = Form(..., description="知识库名称", examples=["samples"]),
|
||
override: bool = Form(False, description="覆盖已有文件"),
|
||
to_vector_store: bool = Form(True, description="上传文件后是否进行向量化"),
|
||
chunk_size: int = Form(CHUNK_SIZE, description="知识库中单段文本最大长度"),
|
||
chunk_overlap: int = Form(OVERLAP_SIZE, description="知识库中相邻文本重合长度"),
|
||
zh_title_enhance: bool = Form(ZH_TITLE_ENHANCE, description="是否开启中文标题加强"),
|
||
docs: str = Form("", description="自定义的docs,需要转为json字符串"),
|
||
not_refresh_vs_cache: bool = Form(False, description="暂不保存向量库(用于FAISS)"),
|
||
) -> BaseResponse:
|
||
"""
|
||
API接口:上传文件,并/或向量化
|
||
"""
|
||
if not validate_kb_name(knowledge_base_name):
|
||
return BaseResponse(code=403, msg="Don't attack me")
|
||
|
||
kb = KBServiceFactory.get_service_by_name(knowledge_base_name)
|
||
if kb is None:
|
||
return BaseResponse(code=404, msg=f"未找到知识库 {knowledge_base_name}")
|
||
|
||
docs = json.loads(docs) if docs else {}
|
||
failed_files = {}
|
||
file_names = list(docs.keys())
|
||
|
||
# 先将上传的文件保存到磁盘
|
||
for result in _save_files_in_thread(files, knowledge_base_name=knowledge_base_name, override=override):
|
||
filename = result["data"]["file_name"]
|
||
if result["code"] != 200:
|
||
failed_files[filename] = result["msg"]
|
||
|
||
if filename not in file_names:
|
||
file_names.append(filename)
|
||
|
||
# 对保存的文件进行向量化
|
||
if to_vector_store:
|
||
result = update_docs(
|
||
knowledge_base_name=knowledge_base_name,
|
||
file_names=file_names,
|
||
override_custom_docs=True,
|
||
chunk_size=chunk_size,
|
||
chunk_overlap=chunk_overlap,
|
||
zh_title_enhance=zh_title_enhance,
|
||
docs=docs,
|
||
not_refresh_vs_cache=True,
|
||
)
|
||
failed_files.update(result.data["failed_files"])
|
||
if not not_refresh_vs_cache:
|
||
kb.save_vector_store()
|
||
|
||
return BaseResponse(code=200, msg="文件上传与向量化完成", data={"failed_files": failed_files})
|
||
|
||
|
||
def delete_docs(
|
||
knowledge_base_name: str = Body(..., examples=["samples"]),
|
||
file_names: List[str] = Body(..., examples=[["file_name.md", "test.txt"]]),
|
||
delete_content: bool = Body(False),
|
||
not_refresh_vs_cache: bool = Body(False, description="暂不保存向量库(用于FAISS)"),
|
||
) -> BaseResponse:
|
||
if not validate_kb_name(knowledge_base_name):
|
||
return BaseResponse(code=403, msg="Don't attack me")
|
||
|
||
knowledge_base_name = urllib.parse.unquote(knowledge_base_name)
|
||
kb = KBServiceFactory.get_service_by_name(knowledge_base_name)
|
||
if kb is None:
|
||
return BaseResponse(code=404, msg=f"未找到知识库 {knowledge_base_name}")
|
||
|
||
failed_files = {}
|
||
for file_name in file_names:
|
||
if not kb.exist_doc(file_name):
|
||
failed_files[file_name] = f"未找到文件 {file_name}"
|
||
|
||
try:
|
||
kb_file = KnowledgeFile(filename=file_name,
|
||
knowledge_base_name=knowledge_base_name)
|
||
kb.delete_doc(kb_file, delete_content, not_refresh_vs_cache=True)
|
||
except Exception as e:
|
||
msg = f"{file_name} 文件删除失败,错误信息:{e}"
|
||
logger.error(f'{e.__class__.__name__}: {msg}',
|
||
exc_info=e if log_verbose else None)
|
||
failed_files[file_name] = msg
|
||
|
||
if not not_refresh_vs_cache:
|
||
kb.save_vector_store()
|
||
|
||
return BaseResponse(code=200, msg=f"文件删除完成", data={"failed_files": failed_files})
|
||
|
||
|
||
def update_info(
|
||
knowledge_base_name: str = Body(..., description="知识库名称", examples=["samples"]),
|
||
kb_info: str = Body(..., description="知识库介绍", examples=["这是一个知识库"]),
|
||
):
|
||
if not validate_kb_name(knowledge_base_name):
|
||
return BaseResponse(code=403, msg="Don't attack me")
|
||
|
||
kb = KBServiceFactory.get_service_by_name(knowledge_base_name)
|
||
if kb is None:
|
||
return BaseResponse(code=404, msg=f"未找到知识库 {knowledge_base_name}")
|
||
kb.update_info(kb_info)
|
||
|
||
return BaseResponse(code=200, msg=f"知识库介绍修改完成", data={"kb_info": kb_info})
|
||
|
||
|
||
def update_docs(
|
||
knowledge_base_name: str = Body(..., description="知识库名称", examples=["samples"]),
|
||
file_names: List[str] = Body(..., description="文件名称,支持多文件", examples=[["file_name1", "text.txt"]]),
|
||
chunk_size: int = Body(CHUNK_SIZE, description="知识库中单段文本最大长度"),
|
||
chunk_overlap: int = Body(OVERLAP_SIZE, description="知识库中相邻文本重合长度"),
|
||
zh_title_enhance: bool = Body(ZH_TITLE_ENHANCE, description="是否开启中文标题加强"),
|
||
override_custom_docs: bool = Body(False, description="是否覆盖之前自定义的docs"),
|
||
docs: str = Body("", description="自定义的docs,需要转为json字符串"),
|
||
not_refresh_vs_cache: bool = Body(False, description="暂不保存向量库(用于FAISS)"),
|
||
) -> BaseResponse:
|
||
"""
|
||
更新知识库文档
|
||
"""
|
||
if not validate_kb_name(knowledge_base_name):
|
||
return BaseResponse(code=403, msg="Don't attack me")
|
||
|
||
kb = KBServiceFactory.get_service_by_name(knowledge_base_name)
|
||
if kb is None:
|
||
return BaseResponse(code=404, msg=f"未找到知识库 {knowledge_base_name}")
|
||
|
||
failed_files = {}
|
||
kb_files = []
|
||
docs = json.loads(docs) if docs else {}
|
||
|
||
# 生成需要加载docs的文件列表
|
||
for file_name in file_names:
|
||
file_detail = get_file_detail(kb_name=knowledge_base_name, filename=file_name)
|
||
# 如果该文件之前使用了自定义docs,则根据参数决定略过或覆盖
|
||
if file_detail.get("custom_docs") and not override_custom_docs:
|
||
continue
|
||
if file_name not in docs:
|
||
try:
|
||
kb_files.append(KnowledgeFile(filename=file_name, knowledge_base_name=knowledge_base_name))
|
||
except Exception as e:
|
||
msg = f"加载文档 {file_name} 时出错:{e}"
|
||
logger.error(f'{e.__class__.__name__}: {msg}',
|
||
exc_info=e if log_verbose else None)
|
||
failed_files[file_name] = msg
|
||
|
||
# 从文件生成docs,并进行向量化。
|
||
# 这里利用了KnowledgeFile的缓存功能,在多线程中加载Document,然后传给KnowledgeFile
|
||
for status, result in files2docs_in_thread(kb_files,
|
||
chunk_size=chunk_size,
|
||
chunk_overlap=chunk_overlap,
|
||
zh_title_enhance=zh_title_enhance):
|
||
if status:
|
||
kb_name, file_name, new_docs = result
|
||
kb_file = KnowledgeFile(filename=file_name,
|
||
knowledge_base_name=knowledge_base_name)
|
||
kb_file.splited_docs = new_docs
|
||
kb.update_doc(kb_file, not_refresh_vs_cache=True)
|
||
else:
|
||
kb_name, file_name, error = result
|
||
failed_files[file_name] = error
|
||
|
||
# 将自定义的docs进行向量化
|
||
for file_name, v in docs.items():
|
||
try:
|
||
v = [x if isinstance(x, Document) else Document(**x) for x in v]
|
||
kb_file = KnowledgeFile(filename=file_name, knowledge_base_name=knowledge_base_name)
|
||
kb.update_doc(kb_file, docs=v, not_refresh_vs_cache=True)
|
||
except Exception as e:
|
||
msg = f"为 {file_name} 添加自定义docs时出错:{e}"
|
||
logger.error(f'{e.__class__.__name__}: {msg}',
|
||
exc_info=e if log_verbose else None)
|
||
failed_files[file_name] = msg
|
||
|
||
if not not_refresh_vs_cache:
|
||
kb.save_vector_store()
|
||
|
||
return BaseResponse(code=200, msg=f"更新文档完成", data={"failed_files": failed_files})
|
||
|
||
|
||
def download_doc(
|
||
knowledge_base_name: str = Query(..., description="知识库名称", examples=["samples"]),
|
||
file_name: str = Query(..., description="文件名称", examples=["test.txt"]),
|
||
preview: bool = Query(False, description="是:浏览器内预览;否:下载"),
|
||
):
|
||
"""
|
||
下载知识库文档
|
||
"""
|
||
if not validate_kb_name(knowledge_base_name):
|
||
return BaseResponse(code=403, msg="Don't attack me")
|
||
|
||
kb = KBServiceFactory.get_service_by_name(knowledge_base_name)
|
||
if kb is None:
|
||
return BaseResponse(code=404, msg=f"未找到知识库 {knowledge_base_name}")
|
||
|
||
if preview:
|
||
content_disposition_type = "inline"
|
||
else:
|
||
content_disposition_type = None
|
||
|
||
try:
|
||
kb_file = KnowledgeFile(filename=file_name,
|
||
knowledge_base_name=knowledge_base_name)
|
||
|
||
if os.path.exists(kb_file.filepath):
|
||
return FileResponse(
|
||
path=kb_file.filepath,
|
||
filename=kb_file.filename,
|
||
media_type="multipart/form-data",
|
||
content_disposition_type=content_disposition_type,
|
||
)
|
||
except Exception as e:
|
||
msg = f"{kb_file.filename} 读取文件失败,错误信息是:{e}"
|
||
logger.error(f'{e.__class__.__name__}: {msg}',
|
||
exc_info=e if log_verbose else None)
|
||
return BaseResponse(code=500, msg=msg)
|
||
|
||
return BaseResponse(code=500, msg=f"{kb_file.filename} 读取文件失败")
|
||
|
||
|
||
def recreate_vector_store(
|
||
knowledge_base_name: str = Body(..., examples=["samples"]),
|
||
allow_empty_kb: bool = Body(True),
|
||
vs_type: str = Body(DEFAULT_VS_TYPE),
|
||
embed_model: str = Body(DEFAULT_EMBEDDING_MODEL),
|
||
chunk_size: int = Body(CHUNK_SIZE, description="知识库中单段文本最大长度"),
|
||
chunk_overlap: int = Body(OVERLAP_SIZE, description="知识库中相邻文本重合长度"),
|
||
zh_title_enhance: bool = Body(ZH_TITLE_ENHANCE, description="是否开启中文标题加强"),
|
||
not_refresh_vs_cache: bool = Body(False, description="暂不保存向量库(用于FAISS)"),
|
||
):
|
||
"""
|
||
recreate vector store from the content.
|
||
this is usefull when user can copy files to content folder directly instead of upload through network.
|
||
by default, get_service_by_name only return knowledge base in the info.db and having document files in it.
|
||
set allow_empty_kb to True make it applied on empty knowledge base which it not in the info.db or having no documents.
|
||
"""
|
||
|
||
def output():
|
||
kb = KBServiceFactory.get_service(knowledge_base_name, vs_type, embed_model)
|
||
if not kb.exists() and not allow_empty_kb:
|
||
yield {"code": 404, "msg": f"未找到知识库 ‘{knowledge_base_name}’"}
|
||
else:
|
||
error_msg = f"could not recreate vector store because failed to access embed model."
|
||
if not kb.check_embed_model(error_msg):
|
||
yield {"code": 404, "msg": error_msg}
|
||
else:
|
||
if kb.exists():
|
||
kb.clear_vs()
|
||
kb.create_kb()
|
||
files = list_files_from_folder(knowledge_base_name)
|
||
kb_files = [(file, knowledge_base_name) for file in files]
|
||
i = 0
|
||
for status, result in files2docs_in_thread(kb_files,
|
||
chunk_size=chunk_size,
|
||
chunk_overlap=chunk_overlap,
|
||
zh_title_enhance=zh_title_enhance):
|
||
if status:
|
||
kb_name, file_name, docs = result
|
||
kb_file = KnowledgeFile(filename=file_name, knowledge_base_name=kb_name)
|
||
kb_file.splited_docs = docs
|
||
yield json.dumps({
|
||
"code": 200,
|
||
"msg": f"({i + 1} / {len(files)}): {file_name}",
|
||
"total": len(files),
|
||
"finished": i + 1,
|
||
"doc": file_name,
|
||
}, ensure_ascii=False)
|
||
kb.add_doc(kb_file, not_refresh_vs_cache=True)
|
||
else:
|
||
kb_name, file_name, error = result
|
||
msg = f"添加文件‘{file_name}’到知识库‘{knowledge_base_name}’时出错:{error}。已跳过。"
|
||
logger.error(msg)
|
||
yield json.dumps({
|
||
"code": 500,
|
||
"msg": msg,
|
||
})
|
||
i += 1
|
||
if not not_refresh_vs_cache:
|
||
kb.save_vector_store()
|
||
|
||
return EventSourceResponse(output())
|