liunux4odoo deed92169f
支持在线 Embeddings:zhipu-api, qwen-api, minimax-api, qianfan-api (#1907)
* 新功能:
- 支持在线 Embeddings:zhipu-api, qwen-api, minimax-api, qianfan-api
- API 增加 /other/embed_texts 接口
- init_database.py 增加 --embed-model 参数,可以指定使用的嵌入模型(本地或在线均可)

问题修复:
- API 中 list_config_models 会删除 ONLINE_LLM_MODEL 中的敏感信息,导致第二轮API请求错误

开发者:
- 优化 kb_service 中 Embeddings 操作:
  - 统一加载接口: server.utils.load_embeddings,利用全局缓存避免各处 Embeddings 传参
  - 统一文本嵌入接口:server.embedding_api.[embed_texts, embed_documents]
2023-10-28 23:37:30 +08:00

209 lines
7.8 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import sys
from fastchat.conversation import Conversation
from server.model_workers.base import *
from server.utils import get_httpx_client
from cachetools import cached, TTLCache
import json
from fastchat import conversation as conv
import sys
from server.model_workers.base import ApiEmbeddingsParams
from typing import List, Literal, Dict
MODEL_VERSIONS = {
"ernie-bot-4": "completions_pro",
"ernie-bot": "completions",
"ernie-bot-turbo": "eb-instant",
"bloomz-7b": "bloomz_7b1",
"qianfan-bloomz-7b-c": "qianfan_bloomz_7b_compressed",
"llama2-7b-chat": "llama_2_7b",
"llama2-13b-chat": "llama_2_13b",
"llama2-70b-chat": "llama_2_70b",
"qianfan-llama2-ch-7b": "qianfan_chinese_llama_2_7b",
"chatglm2-6b-32k": "chatglm2_6b_32k",
"aquilachat-7b": "aquilachat_7b",
# "linly-llama2-ch-7b": "", # 暂未发布
# "linly-llama2-ch-13b": "", # 暂未发布
# "chatglm2-6b": "", # 暂未发布
# "chatglm2-6b-int4": "", # 暂未发布
# "falcon-7b": "", # 暂未发布
# "falcon-180b-chat": "", # 暂未发布
# "falcon-40b": "", # 暂未发布
# "rwkv4-world": "", # 暂未发布
# "rwkv5-world": "", # 暂未发布
# "rwkv4-pile-14b": "", # 暂未发布
# "rwkv4-raven-14b": "", # 暂未发布
# "open-llama-7b": "", # 暂未发布
# "dolly-12b": "", # 暂未发布
# "mpt-7b-instruct": "", # 暂未发布
# "mpt-30b-instruct": "", # 暂未发布
# "OA-Pythia-12B-SFT-4": "", # 暂未发布
# "xverse-13b": "", # 暂未发布
# # 以下为企业测试,需要单独申请
# "flan-ul2": "",
# "Cerebras-GPT-6.7B": ""
# "Pythia-6.9B": ""
}
@cached(TTLCache(1, 1800)) # 经过测试缓存的token可以使用目前每30分钟刷新一次
def get_baidu_access_token(api_key: str, secret_key: str) -> str:
"""
使用 AKSK 生成鉴权签名Access Token
:return: access_token或是None(如果错误)
"""
url = "https://aip.baidubce.com/oauth/2.0/token"
params = {"grant_type": "client_credentials", "client_id": api_key, "client_secret": secret_key}
try:
with get_httpx_client() as client:
return client.get(url, params=params).json().get("access_token")
except Exception as e:
print(f"failed to get token from baidu: {e}")
class QianFanWorker(ApiModelWorker):
"""
百度千帆
"""
DEFAULT_EMBED_MODEL = "embedding-v1"
def __init__(
self,
*,
version: Literal["ernie-bot", "ernie-bot-turbo"] = "ernie-bot",
model_names: List[str] = ["qianfan-api"],
controller_addr: str = None,
worker_addr: str = None,
**kwargs,
):
kwargs.update(model_names=model_names, controller_addr=controller_addr, worker_addr=worker_addr)
kwargs.setdefault("context_len", 16384)
super().__init__(**kwargs)
self.version = version
def do_chat(self, params: ApiChatParams) -> Dict:
params.load_config(self.model_names[0])
# import qianfan
# comp = qianfan.ChatCompletion(model=params.version,
# endpoint=params.version_url,
# ak=params.api_key,
# sk=params.secret_key,)
# text = ""
# for resp in comp.do(messages=params.messages,
# temperature=params.temperature,
# top_p=params.top_p,
# stream=True):
# if resp.code == 200:
# if chunk := resp.body.get("result"):
# text += chunk
# yield {
# "error_code": 0,
# "text": text
# }
# else:
# yield {
# "error_code": resp.code,
# "text": str(resp.body),
# }
BASE_URL = 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat' \
'/{model_version}?access_token={access_token}'
access_token = get_baidu_access_token(params.api_key, params.secret_key)
if not access_token:
yield {
"error_code": 403,
"text": f"failed to get access token. have you set the correct api_key and secret key?",
}
url = BASE_URL.format(
model_version=params.version_url or MODEL_VERSIONS[params.version.lower()],
access_token=access_token,
)
payload = {
"messages": params.messages,
"temperature": params.temperature,
"stream": True
}
headers = {
'Content-Type': 'application/json',
'Accept': 'application/json',
}
text = ""
with get_httpx_client() as client:
with client.stream("POST", url, headers=headers, json=payload) as response:
for line in response.iter_lines():
if not line.strip():
continue
if line.startswith("data: "):
line = line[6:]
resp = json.loads(line)
if "result" in resp.keys():
text += resp["result"]
yield {
"error_code": 0,
"text": text
}
else:
yield {
"error_code": resp["error_code"],
"text": resp["error_msg"]
}
def do_embeddings(self, params: ApiEmbeddingsParams) -> Dict:
params.load_config(self.model_names[0])
# import qianfan
# embed = qianfan.Embedding(ak=params.api_key, sk=params.secret_key)
# resp = embed.do(texts = params.texts, model=params.embed_model or self.DEFAULT_EMBED_MODEL)
# if resp.code == 200:
# embeddings = [x.embedding for x in resp.body.get("data", [])]
# return {"code": 200, "embeddings": embeddings}
# else:
# return {"code": resp.code, "msg": str(resp.body)}
embed_model = params.embed_model or self.DEFAULT_EMBED_MODEL
access_token = get_baidu_access_token(params.api_key, params.secret_key)
url = f"https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/embeddings/{embed_model}?access_token={access_token}"
with get_httpx_client() as client:
resp = client.post(url, json={"input": params.texts}).json()
if "error_cdoe" not in resp:
embeddings = [x["embedding"] for x in resp.get("data", [])]
return {"code": 200, "data": embeddings}
else:
return {"code": resp["error_code"], "msg": resp["error_msg"]}
# TODO: qianfan支持续写模型
def get_embeddings(self, params):
# TODO: 支持embeddings
print("embedding")
print(params)
def make_conv_template(self, conv_template: str = None, model_path: str = None) -> Conversation:
# TODO: 确认模板是否需要修改
return conv.Conversation(
name=self.model_names[0],
system_message="你是一个聪明的助手,请根据用户的提示来完成任务",
messages=[],
roles=["user", "assistant"],
sep="\n### ",
stop_str="###",
)
if __name__ == "__main__":
import uvicorn
from server.utils import MakeFastAPIOffline
from fastchat.serve.model_worker import app
worker = QianFanWorker(
controller_addr="http://127.0.0.1:20001",
worker_addr="http://127.0.0.1:21004"
)
sys.modules["fastchat.serve.model_worker"].worker = worker
MakeFastAPIOffline(app)
uvicorn.run(app, port=21004)