liunux4odoo deed92169f
支持在线 Embeddings:zhipu-api, qwen-api, minimax-api, qianfan-api (#1907)
* 新功能:
- 支持在线 Embeddings:zhipu-api, qwen-api, minimax-api, qianfan-api
- API 增加 /other/embed_texts 接口
- init_database.py 增加 --embed-model 参数,可以指定使用的嵌入模型(本地或在线均可)

问题修复:
- API 中 list_config_models 会删除 ONLINE_LLM_MODEL 中的敏感信息,导致第二轮API请求错误

开发者:
- 优化 kb_service 中 Embeddings 操作:
  - 统一加载接口: server.utils.load_embeddings,利用全局缓存避免各处 Embeddings 传参
  - 统一文本嵌入接口:server.embedding_api.[embed_texts, embed_documents]
2023-10-28 23:37:30 +08:00

135 lines
4.9 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

from fastchat.conversation import Conversation
from server.model_workers.base import *
from fastchat import conversation as conv
import sys
import json
from server.model_workers.base import ApiEmbeddingsParams
from server.utils import get_httpx_client
from typing import List, Dict
class MiniMaxWorker(ApiModelWorker):
DEFAULT_EMBED_MODEL = "embo-01"
def __init__(
self,
*,
model_names: List[str] = ["minimax-api"],
controller_addr: str = None,
worker_addr: str = None,
version: str = "abab5.5-chat",
**kwargs,
):
kwargs.update(model_names=model_names, controller_addr=controller_addr, worker_addr=worker_addr)
kwargs.setdefault("context_len", 16384)
super().__init__(**kwargs)
self.version = version
def validate_messages(self, messages: List[Dict]) -> List[Dict]:
role_maps = {
"user": self.user_role,
"assistant": self.ai_role,
"system": "system",
}
messages = [{"sender_type": role_maps[x["role"]], "text": x["content"]} for x in messages]
return messages
def do_chat(self, params: ApiChatParams) -> Dict:
# 按照官网推荐直接调用abab 5.5模型
# TODO: 支持指定回复要求支持指定用户名称、AI名称
params.load_config(self.model_names[0])
url = 'https://api.minimax.chat/v1/text/chatcompletion{pro}?GroupId={group_id}'
pro = "_pro" if params.is_pro else ""
headers = {
"Authorization": f"Bearer {params.api_key}",
"Content-Type": "application/json",
}
messages = self.validate_messages(params.messages)
data = {
"model": params.version,
"stream": True,
"mask_sensitive_info": True,
"messages": messages,
"temperature": params.temperature,
"top_p": params.top_p,
"tokens_to_generate": params.max_tokens or 1024,
# TODO: 以下参数为minimax特有传入空值会出错。
# "prompt": params.system_message or self.conv.system_message,
# "bot_setting": [],
# "role_meta": params.role_meta,
}
with get_httpx_client() as client:
response = client.stream("POST",
url.format(pro=pro, group_id=params.group_id),
headers=headers,
json=data)
with response as r:
text = ""
for e in r.iter_text():
if not e.startswith("data: "): # 真是优秀的返回
yield {"error_code": 500, "text": f"minimax返回错误的结果{e}"}
continue
data = json.loads(e[6:])
if data.get("usage"):
break
if choices := data.get("choices"):
if chunk := choices[0].get("delta", ""):
text += chunk
yield {"error_code": 0, "text": text}
def do_embeddings(self, params: ApiEmbeddingsParams) -> Dict:
params.load_config(self.model_names[0])
url = f"https://api.minimax.chat/v1/embeddings?GroupId={params.group_id}"
headers = {
"Authorization": f"Bearer {params.api_key}",
"Content-Type": "application/json",
}
data = {
"model": params.embed_model or self.DEFAULT_EMBED_MODEL,
"texts": params.texts,
"type": "query" if params.to_query else "db",
}
with get_httpx_client() as client:
r = client.post(url, headers=headers, json=data).json()
if embeddings := r.get("vectors"):
return {"code": 200, "data": embeddings}
elif error := r.get("base_resp"):
return {"code": error["status_code"], "msg": error["status_msg"]}
def get_embeddings(self, params):
# TODO: 支持embeddings
print("embedding")
print(params)
def make_conv_template(self, conv_template: str = None, model_path: str = None) -> Conversation:
# TODO: 确认模板是否需要修改
return conv.Conversation(
name=self.model_names[0],
system_message="你是MiniMax自主研发的大型语言模型回答问题简洁有条理。",
messages=[],
roles=["USER", "BOT"],
sep="\n### ",
stop_str="###",
)
if __name__ == "__main__":
import uvicorn
from server.utils import MakeFastAPIOffline
from fastchat.serve.model_worker import app
worker = MiniMaxWorker(
controller_addr="http://127.0.0.1:20001",
worker_addr="http://127.0.0.1:21002",
)
sys.modules["fastchat.serve.model_worker"].worker = worker
MakeFastAPIOffline(app)
uvicorn.run(app, port=21002)