mirror of
https://github.com/RYDE-WORK/Langchain-Chatchat.git
synced 2026-01-19 13:23:16 +08:00
* 新功能: - 支持在线 Embeddings:zhipu-api, qwen-api, minimax-api, qianfan-api - API 增加 /other/embed_texts 接口 - init_database.py 增加 --embed-model 参数,可以指定使用的嵌入模型(本地或在线均可) 问题修复: - API 中 list_config_models 会删除 ONLINE_LLM_MODEL 中的敏感信息,导致第二轮API请求错误 开发者: - 优化 kb_service 中 Embeddings 操作: - 统一加载接口: server.utils.load_embeddings,利用全局缓存避免各处 Embeddings 传参 - 统一文本嵌入接口:server.embedding_api.[embed_texts, embed_documents]
103 lines
3.3 KiB
Python
103 lines
3.3 KiB
Python
import sys
|
|
sys.path.append(".")
|
|
from server.knowledge_base.migrate import create_tables, reset_tables, folder2db, prune_db_docs, prune_folder_files
|
|
from configs.model_config import NLTK_DATA_PATH, EMBEDDING_MODEL
|
|
import nltk
|
|
nltk.data.path = [NLTK_DATA_PATH] + nltk.data.path
|
|
from datetime import datetime
|
|
import sys
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import argparse
|
|
|
|
parser = argparse.ArgumentParser(description="please specify only one operate method once time.")
|
|
|
|
parser.add_argument(
|
|
"-r",
|
|
"--recreate-vs",
|
|
action="store_true",
|
|
help=('''
|
|
recreate vector store.
|
|
use this option if you have copied document files to the content folder, but vector store has not been populated or DEFAUL_VS_TYPE/EMBEDDING_MODEL changed.
|
|
'''
|
|
)
|
|
)
|
|
parser.add_argument(
|
|
"-u",
|
|
"--update-in-db",
|
|
action="store_true",
|
|
help=('''
|
|
update vector store for files exist in database.
|
|
use this option if you want to recreate vectors for files exist in db and skip files exist in local folder only.
|
|
'''
|
|
)
|
|
)
|
|
parser.add_argument(
|
|
"-i",
|
|
"--increament",
|
|
action="store_true",
|
|
help=('''
|
|
update vector store for files exist in local folder and not exist in database.
|
|
use this option if you want to create vectors increamentally.
|
|
'''
|
|
)
|
|
)
|
|
parser.add_argument(
|
|
"--prune-db",
|
|
action="store_true",
|
|
help=('''
|
|
delete docs in database that not existed in local folder.
|
|
it is used to delete database docs after user deleted some doc files in file browser
|
|
'''
|
|
)
|
|
)
|
|
parser.add_argument(
|
|
"--prune-folder",
|
|
action="store_true",
|
|
help=('''
|
|
delete doc files in local folder that not existed in database.
|
|
is is used to free local disk space by delete unused doc files.
|
|
'''
|
|
)
|
|
)
|
|
parser.add_argument(
|
|
"-n",
|
|
"--kb-name",
|
|
type=str,
|
|
nargs="+",
|
|
default=[],
|
|
help=("specify knowledge base names to operate on. default is all folders exist in KB_ROOT_PATH.")
|
|
)
|
|
parser.add_argument(
|
|
"-e",
|
|
"--embed-model",
|
|
type=str,
|
|
default=EMBEDDING_MODEL,
|
|
help=("specify knowledge base names to operate on. default is all folders exist in KB_ROOT_PATH.")
|
|
)
|
|
|
|
if len(sys.argv) <= 1:
|
|
parser.print_help()
|
|
else:
|
|
args = parser.parse_args()
|
|
start_time = datetime.now()
|
|
|
|
create_tables() # confirm tables exist
|
|
if args.recreate_vs:
|
|
reset_tables()
|
|
print("database talbes reseted")
|
|
print("recreating all vector stores")
|
|
folder2db(kb_names=args.kb_name, mode="recreate_vs", embed_model=args.embed_model)
|
|
elif args.update_in_db:
|
|
folder2db(kb_names=args.kb_name, mode="update_in_db", embed_model=args.embed_model)
|
|
elif args.increament:
|
|
folder2db(kb_names=args.kb_name, mode="increament", embed_model=args.embed_model)
|
|
elif args.prune_db:
|
|
prune_db_docs(args.kb_name)
|
|
elif args.prune_folder:
|
|
prune_folder_files(args.kb_name)
|
|
|
|
end_time = datetime.now()
|
|
print(f"总计用时: {end_time-start_time}")
|