liunux4odoo 5c650a8dc3
优化目录结构 (#4058)
* 优化目录结构

* 修改一些测试问题

---------

Co-authored-by: glide-the <2533736852@qq.com>
2024-05-22 13:11:45 +08:00

242 lines
9.7 KiB
Python

import asyncio
import json
import time
from typing import AsyncIterable, List
import uuid
from fastapi import Body
from sse_starlette.sse import EventSourceResponse
from langchain_core.output_parsers import StrOutputParser
from langchain_core.messages import AIMessage, HumanMessage, convert_to_messages
from langchain.chains import LLMChain
from langchain.prompts.chat import ChatPromptTemplate
from langchain.prompts import PromptTemplate
from chatchat.configs import LLM_MODEL_CONFIG
from chatchat.server.agent.agent_factory.agents_registry import agents_registry
from chatchat.server.agent.container import container
from chatchat.server.api_server.api_schemas import OpenAIChatOutput
from chatchat.server.utils import wrap_done, get_ChatOpenAI, get_prompt_template, MsgType, get_tool
from chatchat.server.chat.utils import History
from chatchat.server.memory.conversation_db_buffer_memory import ConversationBufferDBMemory
from chatchat.server.callback_handler.agent_callback_handler import AgentExecutorAsyncIteratorCallbackHandler, AgentStatus
def create_models_from_config(configs, callbacks, stream):
configs = configs or LLM_MODEL_CONFIG
models = {}
prompts = {}
for model_type, model_configs in configs.items():
for model_name, params in model_configs.items():
callbacks = callbacks if params.get('callbacks', False) else None
model_instance = get_ChatOpenAI(
model_name=model_name,
temperature=params.get('temperature', 0.5),
max_tokens=params.get('max_tokens', 1000),
callbacks=callbacks,
streaming=stream,
local_wrap=True,
)
models[model_type] = model_instance
prompt_name = params.get('prompt_name', 'default')
prompt_template = get_prompt_template(type=model_type, name=prompt_name)
prompts[model_type] = prompt_template
return models, prompts
def create_models_chains(history, history_len, prompts, models, tools, callbacks, conversation_id, metadata):
memory = None
chat_prompt = None
container.metadata = metadata
if history:
history = [History.from_data(h) for h in history]
input_msg = History(role="user", content=prompts["llm_model"]).to_msg_template(False)
chat_prompt = ChatPromptTemplate.from_messages(
[i.to_msg_template() for i in history] + [input_msg])
elif conversation_id and history_len > 0:
memory = ConversationBufferDBMemory(
conversation_id=conversation_id,
llm=models["llm_model"],
message_limit=history_len
)
else:
input_msg = History(role="user", content=prompts["llm_model"]).to_msg_template(False)
chat_prompt = ChatPromptTemplate.from_messages([input_msg])
llm=models["llm_model"]
llm.callbacks = callbacks
chain = LLMChain(
prompt=chat_prompt,
llm=llm,
memory=memory
)
classifier_chain = (
PromptTemplate.from_template(prompts["preprocess_model"])
| models["preprocess_model"]
| StrOutputParser()
)
if "action_model" in models and tools is not None:
agent_executor = agents_registry(
llm=llm,
callbacks=callbacks,
tools=tools,
prompt=None,
verbose=True
)
# branch = RunnableBranch(
# (lambda x: "1" in x["topic"].lower(), agent_executor),
# chain
# )
# full_chain = ({"topic": classifier_chain, "input": lambda x: x["input"]} | branch)
full_chain = ({"input": lambda x: x["input"]} | agent_executor)
else:
chain.llm.callbacks = callbacks
full_chain = ({"input": lambda x: x["input"]} | chain)
return full_chain
async def chat(query: str = Body(..., description="用户输入", examples=["恼羞成怒"]),
metadata: dict = Body({}, description="附件,可能是图像或者其他功能", examples=[]),
conversation_id: str = Body("", description="对话框ID"),
message_id: str = Body(None, description="数据库消息ID"),
history_len: int = Body(-1, description="从数据库中取历史消息的数量"),
history: List[History] = Body(
[],
description="历史对话,设为一个整数可以从数据库中读取历史消息",
examples=[
[
{"role": "user",
"content": "我们来玩成语接龙,我先来,生龙活虎"},
{"role": "assistant", "content": "虎头虎脑"}
]
]
),
stream: bool = Body(True, description="流式输出"),
chat_model_config: dict = Body({}, description="LLM 模型配置", examples=[]),
tool_config: dict = Body({}, description="工具配置", examples=[]),
):
'''Agent 对话'''
async def chat_iterator() -> AsyncIterable[OpenAIChatOutput]:
callback = AgentExecutorAsyncIteratorCallbackHandler()
callbacks = [callback]
models, prompts = create_models_from_config(callbacks=callbacks, configs=chat_model_config,
stream=stream)
all_tools = get_tool().values()
tools = [tool for tool in all_tools if tool.name in tool_config]
tools = [t.copy(update={"callbacks": callbacks}) for t in tools]
full_chain = create_models_chains(prompts=prompts,
models=models,
conversation_id=conversation_id,
tools=tools,
callbacks=callbacks,
history=history,
history_len=history_len,
metadata=metadata)
_history = [History.from_data(h) for h in history]
chat_history = [h.to_msg_tuple() for h in _history]
history_message = convert_to_messages(chat_history)
task = asyncio.create_task(wrap_done(
full_chain.ainvoke(
{
"input": query,
"chat_history": history_message,
}
), callback.done))
last_tool = {}
async for chunk in callback.aiter():
data = json.loads(chunk)
data["tool_calls"] = []
data["message_type"] = MsgType.TEXT
if data["status"] == AgentStatus.tool_start:
last_tool = {
"index": 0,
"id": data["run_id"],
"type": "function",
"function": {
"name": data["tool"],
"arguments": data["tool_input"],
},
"tool_output": None,
"is_error": False,
}
data["tool_calls"].append(last_tool)
if data["status"] in [AgentStatus.tool_end]:
last_tool.update(
tool_output=data["tool_output"],
is_error=data.get("is_error", False)
)
data["tool_calls"] = [last_tool]
last_tool = {}
try:
tool_output = json.loads(data["tool_output"])
if message_type := tool_output.get("message_type"):
data["message_type"] = message_type
except:
...
elif data["status"] == AgentStatus.agent_finish:
try:
tool_output = json.loads(data["text"])
if message_type := tool_output.get("message_type"):
data["message_type"] = message_type
except:
...
ret = OpenAIChatOutput(
id=f"chat{uuid.uuid4()}",
object="chat.completion.chunk",
content=data.get("text", ""),
role="assistant",
tool_calls=data["tool_calls"],
model=models["llm_model"].model_name,
status = data["status"],
message_type = data["message_type"],
message_id=message_id,
)
yield ret.model_dump_json()
# yield OpenAIChatOutput( # return blank text lastly
# id=f"chat{uuid.uuid4()}",
# object="chat.completion.chunk",
# content="",
# role="assistant",
# model=models["llm_model"].model_name,
# status = data["status"],
# message_type = data["message_type"],
# message_id=message_id,
# )
await task
if stream:
return EventSourceResponse(chat_iterator())
else:
ret = OpenAIChatOutput(
id=f"chat{uuid.uuid4()}",
object="chat.completion",
content="",
role="assistant",
finish_reason="stop",
tool_calls=[],
status = AgentStatus.agent_finish,
message_type = MsgType.TEXT,
message_id=message_id,
)
async for chunk in chat_iterator():
data = json.loads(chunk)
if text := data["choices"][0]["delta"]["content"]:
ret.content += text
if data["status"] == AgentStatus.tool_end:
ret.tool_calls += data["choices"][0]["delta"]["tool_calls"]
ret.model = data["model"]
ret.created = data["created"]
return ret.model_dump()