zR 03891cc27a 更新多模态 语音 视觉的内容
1. 更新本地模型语音 视觉多模态功能并设置了对应工具
2024-03-06 13:32:45 +08:00

238 lines
8.5 KiB
Python

"""
This file is a modified version for ChatGLM3-6B the original glm3_agent.py file from the langchain repo.
"""
from __future__ import annotations
import yaml
from langchain.agents.structured_chat.output_parser import StructuredChatOutputParser
from langchain.memory import ConversationBufferWindowMemory
from typing import Any, List, Sequence, Tuple, Optional, Union
import os
from langchain.agents.agent import Agent
from langchain.chains.llm import LLMChain
from langchain.prompts.chat import ChatPromptTemplate, SystemMessagePromptTemplate
import json
import logging
from typing import Any, List, Sequence, Tuple, Optional, Union
from pydantic.schema import model_schema
from langchain.agents.structured_chat.output_parser import StructuredChatOutputParser
from langchain.memory import ConversationBufferWindowMemory
from langchain.agents.agent import Agent
from langchain.chains.llm import LLMChain
from langchain.prompts.chat import ChatPromptTemplate, SystemMessagePromptTemplate
from langchain.agents.agent import AgentOutputParser
from langchain.output_parsers import OutputFixingParser
from langchain.pydantic_v1 import Field
from langchain.schema import AgentAction, AgentFinish, OutputParserException, BasePromptTemplate
from langchain.agents.agent import AgentExecutor
from langchain.callbacks.base import BaseCallbackManager
from langchain.schema.language_model import BaseLanguageModel
from langchain.tools.base import BaseTool
from pydantic.schema import model_schema
HUMAN_MESSAGE_TEMPLATE = "{input}\n\n{agent_scratchpad}"
logger = logging.getLogger(__name__)
class StructuredChatOutputParserWithRetries(AgentOutputParser):
"""Output parser with retries for the structured chat agent."""
base_parser: AgentOutputParser = Field(default_factory=StructuredChatOutputParser)
"""The base parser to use."""
output_fixing_parser: Optional[OutputFixingParser] = None
"""The output fixing parser to use."""
def parse(self, text: str) -> Union[AgentAction, AgentFinish]:
special_tokens = ["Action:", "<|observation|>"]
first_index = min([text.find(token) if token in text else len(text) for token in special_tokens])
text = text[:first_index]
if "tool_call" in text:
action_end = text.find("```")
action = text[:action_end].strip()
params_str_start = text.find("(") + 1
params_str_end = text.rfind(")")
params_str = text[params_str_start:params_str_end]
params_pairs = [param.split("=") for param in params_str.split(",") if "=" in param]
params = {pair[0].strip(): pair[1].strip().strip("'\"") for pair in params_pairs}
action_json = {
"action": action,
"action_input": params
}
else:
action_json = {
"action": "Final Answer",
"action_input": text
}
action_str = f"""
Action:
```
{json.dumps(action_json, ensure_ascii=False)}
```"""
try:
if self.output_fixing_parser is not None:
parsed_obj: Union[
AgentAction, AgentFinish
] = self.output_fixing_parser.parse(action_str)
else:
parsed_obj = self.base_parser.parse(action_str)
return parsed_obj
except Exception as e:
raise OutputParserException(f"Could not parse LLM output: {text}") from e
@property
def _type(self) -> str:
return "structured_chat_ChatGLM3_6b_with_retries"
class StructuredGLM3ChatAgent(Agent):
"""Structured Chat Agent."""
output_parser: AgentOutputParser = Field(
default_factory=StructuredChatOutputParserWithRetries
)
"""Output parser for the agent."""
@property
def observation_prefix(self) -> str:
"""Prefix to append the ChatGLM3-6B observation with."""
return "Observation:"
@property
def llm_prefix(self) -> str:
"""Prefix to append the llm call with."""
return "Thought:"
def _construct_scratchpad(
self, intermediate_steps: List[Tuple[AgentAction, str]]
) -> str:
agent_scratchpad = super()._construct_scratchpad(intermediate_steps)
if not isinstance(agent_scratchpad, str):
raise ValueError("agent_scratchpad should be of type string.")
if agent_scratchpad:
return (
f"This was your previous work "
f"(but I haven't seen any of it! I only see what "
f"you return as final answer):\n{agent_scratchpad}"
)
else:
return agent_scratchpad
@classmethod
def _get_default_output_parser(
cls, llm: Optional[BaseLanguageModel] = None, **kwargs: Any
) -> AgentOutputParser:
return StructuredChatOutputParserWithRetries(llm=llm)
@property
def _stop(self) -> List[str]:
return ["<|observation|>"]
@classmethod
def create_prompt(
cls,
tools: Sequence[BaseTool],
prompt: str = None,
input_variables: Optional[List[str]] = None,
memory_prompts: Optional[List[BasePromptTemplate]] = None,
) -> BasePromptTemplate:
tools_json = []
tool_names = []
for tool in tools:
tool_schema = model_schema(tool.args_schema) if tool.args_schema else {}
simplified_config_langchain = {
"name": tool.name,
"description": tool.description,
"parameters": tool_schema.get("properties", {})
}
tools_json.append(simplified_config_langchain)
tool_names.append(tool.name)
formatted_tools = "\n".join([
f"{tool['name']}: {tool['description']}, args: {tool['parameters']}"
for tool in tools_json
])
formatted_tools = formatted_tools.replace("'", "\\'").replace("{", "{{").replace("}", "}}")
template = prompt.format(tool_names=tool_names,
tools=formatted_tools,
history="None",
input="{input}",
agent_scratchpad="{agent_scratchpad}")
if input_variables is None:
input_variables = ["input", "agent_scratchpad"]
_memory_prompts = memory_prompts or []
messages = [
SystemMessagePromptTemplate.from_template(template),
*_memory_prompts,
]
return ChatPromptTemplate(input_variables=input_variables, messages=messages)
@classmethod
def from_llm_and_tools(
cls,
llm: BaseLanguageModel,
tools: Sequence[BaseTool],
prompt: str = None,
callback_manager: Optional[BaseCallbackManager] = None,
output_parser: Optional[AgentOutputParser] = None,
human_message_template: str = HUMAN_MESSAGE_TEMPLATE,
input_variables: Optional[List[str]] = None,
memory_prompts: Optional[List[BasePromptTemplate]] = None,
**kwargs: Any,
) -> Agent:
"""Construct an agent from an LLM and tools."""
cls._validate_tools(tools)
prompt = cls.create_prompt(
tools,
prompt=prompt,
input_variables=input_variables,
memory_prompts=memory_prompts,
)
llm_chain = LLMChain(
llm=llm,
prompt=prompt,
callback_manager=callback_manager,
)
tool_names = [tool.name for tool in tools]
_output_parser = output_parser or cls._get_default_output_parser(llm=llm)
return cls(
llm_chain=llm_chain,
allowed_tools=tool_names,
output_parser=_output_parser,
**kwargs,
)
@property
def _agent_type(self) -> str:
raise ValueError
def initialize_glm3_agent(
tools: Sequence[BaseTool],
llm: BaseLanguageModel,
prompt: str = None,
memory: Optional[ConversationBufferWindowMemory] = None,
agent_kwargs: Optional[dict] = None,
*,
tags: Optional[Sequence[str]] = None,
**kwargs: Any,
) -> AgentExecutor:
tags_ = list(tags) if tags else []
agent_kwargs = agent_kwargs or {}
agent_obj = StructuredGLM3ChatAgent.from_llm_and_tools(
llm=llm,
tools=tools,
prompt=prompt,
**agent_kwargs
)
return AgentExecutor.from_agent_and_tools(
agent=agent_obj,
tools=tools,
memory=memory,
tags=tags_,
**kwargs,
)