liunux4odoo 6cb1bdf623
添加切换模型功能,支持智谱AI在线模型 (#1342)
* 添加LLM模型切换功能,需要在server_config中设置可切换的模型
* add tests for api.py/llm_model/*
* - 支持模型切换
- 支持智普AI线上模型
- startup.py增加参数`--api-worker`,自动运行所有的线上API模型。使用`-a
  (--all-webui), --all-api`时默认开启该选项
* 修复被fastchat覆盖的标准输出
* 对fastchat日志进行更细致的控制,startup.py中增加-q(--quiet)开关,可以减少无用的fastchat日志输出
* 修正chatglm api的对话模板


Co-authored-by: liunux4odoo <liunu@qq.com>
2023-09-01 23:58:09 +08:00

68 lines
2.7 KiB
Python

from fastapi import Body
from fastapi.responses import StreamingResponse
from configs.model_config import llm_model_dict, LLM_MODEL
from server.chat.utils import wrap_done
from langchain.chat_models import ChatOpenAI
from langchain import LLMChain
from langchain.callbacks import AsyncIteratorCallbackHandler
from typing import AsyncIterable
import asyncio
from langchain.prompts.chat import ChatPromptTemplate
from typing import List
from server.chat.utils import History
def chat(query: str = Body(..., description="用户输入", examples=["恼羞成怒"]),
history: List[History] = Body([],
description="历史对话",
examples=[[
{"role": "user", "content": "我们来玩成语接龙,我先来,生龙活虎"},
{"role": "assistant", "content": "虎头虎脑"}]]
),
stream: bool = Body(False, description="流式输出"),
model_name: str = Body(LLM_MODEL, description="LLM 模型名称。"),
):
history = [History.from_data(h) for h in history]
async def chat_iterator(query: str,
history: List[History] = [],
model_name: str = LLM_MODEL,
) -> AsyncIterable[str]:
callback = AsyncIteratorCallbackHandler()
model = ChatOpenAI(
streaming=True,
verbose=True,
callbacks=[callback],
openai_api_key=llm_model_dict[model_name]["api_key"],
openai_api_base=llm_model_dict[model_name]["api_base_url"],
model_name=model_name,
openai_proxy=llm_model_dict[model_name].get("openai_proxy")
)
input_msg = History(role="user", content="{{ input }}").to_msg_template(False)
chat_prompt = ChatPromptTemplate.from_messages(
[i.to_msg_template() for i in history] + [input_msg])
chain = LLMChain(prompt=chat_prompt, llm=model)
# Begin a task that runs in the background.
task = asyncio.create_task(wrap_done(
chain.acall({"input": query}),
callback.done),
)
if stream:
async for token in callback.aiter():
# Use server-sent-events to stream the response
yield token
else:
answer = ""
async for token in callback.aiter():
answer += token
yield answer
await task
return StreamingResponse(chat_iterator(query, history, model_name),
media_type="text/event-stream")