zR 253168a187 Dev (#2280)
* 修复Azure 不设置Max token的bug

* 重写agent

1. 修改Agent实现方式,支持多参数,仅剩 ChatGLM3-6b和 OpenAI GPT4 支持,剩余模型将在暂时缺席Agent功能
2. 删除agent_chat 集成到llm_chat中
3. 重写大部分工具,适应新Agent

* 更新架构

* 删除web_chat,自动融合

* 移除所有聊天,都变成Agent控制

* 更新配置文件

* 更新配置模板和提示词

* 更改参数选择bug
2024-03-06 13:32:36 +08:00

70 lines
3.0 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

from fastapi import Body
from fastapi.responses import StreamingResponse
from configs import LLM_MODEL_CONFIG
from server.utils import wrap_done, get_OpenAI
from langchain.chains import LLMChain
from langchain.callbacks import AsyncIteratorCallbackHandler
from typing import AsyncIterable, Optional
import asyncio
from langchain.prompts import PromptTemplate
from server.utils import get_prompt_template
async def completion(query: str = Body(..., description="用户输入", examples=["恼羞成怒"]),
stream: bool = Body(False, description="流式输出"),
echo: bool = Body(False, description="除了输出之外,还回显输入"),
model_name: str = Body(None, description="LLM 模型名称。"),
temperature: float = Body(0.01, description="LLM 采样温度", ge=0.0, le=1.0),
max_tokens: Optional[int] = Body(1024, description="限制LLM生成Token数量默认None代表模型最大值"),
# top_p: float = Body(TOP_P, description="LLM 核采样。勿与temperature同时设置", gt=0.0, lt=1.0),
prompt_name: str = Body("default",
description="使用的prompt模板名称(在configs/prompt_config.py中配置)"),
):
#todo 因ApiModelWorker 默认是按chat处理的会对params["prompt"] 解析为messages因此ApiModelWorker 使用时需要有相应处理
async def completion_iterator(query: str,
model_name: str = None,
prompt_name: str = prompt_name,
echo: bool = echo,
) -> AsyncIterable[str]:
nonlocal max_tokens
callback = AsyncIteratorCallbackHandler()
if isinstance(max_tokens, int) and max_tokens <= 0:
max_tokens = None
model = get_OpenAI(
model_name=model_name,
temperature=temperature,
max_tokens=max_tokens,
callbacks=[callback],
echo=echo
)
prompt_template = get_prompt_template("completion", prompt_name)
prompt = PromptTemplate.from_template(prompt_template)
chain = LLMChain(prompt=prompt, llm=model)
# Begin a task that runs in the background.
task = asyncio.create_task(wrap_done(
chain.acall({"input": query}),
callback.done),
)
if stream:
async for token in callback.aiter():
# Use server-sent-events to stream the response
yield token
else:
answer = ""
async for token in callback.aiter():
answer += token
yield answer
await task
return EventSourceResponse(completion_iterator(query=query,
model_name=model_name,
prompt_name=prompt_name),
)