mirror of
https://github.com/RYDE-WORK/Langchain-Chatchat.git
synced 2026-01-19 21:37:20 +08:00
* 优化configs (#1474) * remove llm_model_dict * optimize configs * fix get_model_path * 更改一些默认参数,添加千帆的默认配置 * Update server_config.py.example * fix merge conflict for #1474 (#1494) * 修复ChatGPT api_base_url错误;用户可以在model_config在线模型配置中覆盖默认的api_base_url (#1496) * 优化LLM模型列表获取、切换的逻辑: (#1497) 1、更准确的获取未运行的可用模型 2、优化WEBUI模型列表显示与切换的控制逻辑 * 更新migrate.py和init_database.py,加强知识库迁移工具: (#1498) 1. 添加--update-in-db参数,按照数据库信息,从本地文件更新向量库 2. 添加--increament参数,根据本地文件增量更新向量库 3. 添加--prune-db参数,删除本地文件后,自动清理相关的向量库 4. 添加--prune-folder参数,根据数据库信息,清理无用的本地文件 5. 取消--update-info-only参数。数据库中存储了向量库信息,该操作意义不大 6. 添加--kb-name参数,所有操作支持指定操作的知识库,不指定则为所有本地知识库 7. 添加知识库迁移的测试用例 8. 删除milvus_kb_service的save_vector_store方法 * feat: support volc fangzhou * 使火山方舟正常工作,添加错误处理和测试用例 * feat: support volc fangzhou (#1501) * feat: support volc fangzhou --------- Co-authored-by: liunux4odoo <41217877+liunux4odoo@users.noreply.github.com> Co-authored-by: liqiankun.1111 <liqiankun.1111@bytedance.com> * 第一版初步agent实现 (#1503) * 第一版初步agent实现 * 增加steaming参数 * 修改了weather.py --------- Co-authored-by: zR <zRzRzRzRzRzRzR> * 添加configs/prompt_config.py,允许用户自定义prompt模板: (#1504) 1、 默认包含2个模板,分别用于LLM对话,知识库和搜索引擎对话 2、 server/utils.py提供函数get_prompt_template,获取指定的prompt模板内容(支持热加载) 3、 api.py中chat/knowledge_base_chat/search_engine_chat接口支持prompt_name参数 * 增加其它模型的参数适配 * 增加传入矢量名称加载 * 1. 搜索引擎问答支持历史记录; 2. 修复知识库问答历史记录传参错误:用户输入被传入history,问题出在webui中重复获取历史消息,api知识库对话接口并无问题。 * langchain日志开关 * move wrap_done & get_ChatOpenAI from server.chat.utils to server.utils (#1506) * 修复faiss_pool知识库缓存key错误 (#1507) * fix ReadMe anchor link (#1500) * fix : Duplicate variable and function name (#1509) Co-authored-by: Jim <zhangpengyi@taijihuabao.com> * Update README.md * fix #1519: streamlit-chatbox旧版BUG,但新版有兼容问题,先在webui中作处理,并限定chatbox版本 (#1525) close #1519 * 【功能新增】在线 LLM 模型支持阿里云通义千问 (#1534) * feat: add qwen-api * 使Qwen API支持temperature参数;添加测试用例 * 将online-api的sdk列为可选依赖 --------- Co-authored-by: liunux4odoo <liunux@qq.com> * 处理序列化至磁盘的逻辑 * remove depends on volcengine * update kb_doc_api: use Form instead of Body when upload file * 将所有httpx请求改为使用Client,提高效率,方便以后设置代理等。 (#1554) 将所有httpx请求改为使用Client,提高效率,方便以后设置代理等。 将本项目相关服务加入无代理列表,避免fastchat的服务器请求错误。(windows下无效) * update QR code * update readme_en,readme,requirements_api,requirements,model_config.py.example:测试baichuan2-7b;更新相关文档 * 新增特性:1.支持vllm推理加速框架;2. 更新支持模型列表 * 更新文件:1. startup,model_config.py.example,serve_config.py.example,FAQ * 1. debug vllm加速框架完毕;2. 修改requirements,requirements_api对vllm的依赖;3.注释掉serve_config中baichuan-7b的device为cpu的配置 * 1. 更新congif中关于vllm后端相关说明;2. 更新requirements,requirements_api; * 增加了仅限GPT4的agent功能,陆续补充,中文版readme已写 (#1611) * Dev (#1613) * 增加了仅限GPT4的agent功能,陆续补充,中文版readme已写 * issue提到的一个bug * 温度最小改成0,但是不应该支持负数 * 修改了最小的温度 * fix: set vllm based on platform to avoid error on windows * fix: langchain warnings for import from root * 修复webui中重建知识库以及对话界面UI错误 (#1615) * 修复bug:webui点重建知识库时,如果存在不支持的文件会导致整个接口错误;migrate中没有导入CHUNK_SIZE * 修复:webui对话界面的expander一直为running状态;简化历史消息获取方法 * 根据官方文档,添加对英文版的bge embedding的指示模板 (#1585) Co-authored-by: zR <2448370773@qq.com> * Dev (#1618) * 增加了仅限GPT4的agent功能,陆续补充,中文版readme已写 * issue提到的一个bug * 温度最小改成0,但是不应该支持负数 * 修改了最小的温度 * 增加了部分Agent支持和修改了启动文件的部分bug * 修改了GPU数量配置文件 * 1 1 * 修复配置文件错误 * 更新readme,稳定测试 * 更改readme 0928 (#1619) * 增加了仅限GPT4的agent功能,陆续补充,中文版readme已写 * issue提到的一个bug * 温度最小改成0,但是不应该支持负数 * 修改了最小的温度 * 增加了部分Agent支持和修改了启动文件的部分bug * 修改了GPU数量配置文件 * 1 1 * 修复配置文件错误 * 更新readme,稳定测试 * 更新readme * fix readme * 处理序列化至磁盘的逻辑 * update version number to v0.2.5 --------- Co-authored-by: qiankunli <qiankun.li@qq.com> Co-authored-by: liqiankun.1111 <liqiankun.1111@bytedance.com> Co-authored-by: zR <2448370773@qq.com> Co-authored-by: glide-the <2533736852@qq.com> Co-authored-by: Water Zheng <1499383852@qq.com> Co-authored-by: Jim Zhang <dividi_z@163.com> Co-authored-by: Jim <zhangpengyi@taijihuabao.com> Co-authored-by: imClumsyPanda <littlepanda0716@gmail.com> Co-authored-by: Leego <leegodev@hotmail.com> Co-authored-by: hzg0601 <hzg0601@163.com> Co-authored-by: WilliamChen-luckbob <58684828+WilliamChen-luckbob@users.noreply.github.com>
368 lines
11 KiB
Python
368 lines
11 KiB
Python
import operator
|
||
from abc import ABC, abstractmethod
|
||
|
||
import os
|
||
|
||
import numpy as np
|
||
from langchain.embeddings.base import Embeddings
|
||
from langchain.docstore.document import Document
|
||
from sklearn.preprocessing import normalize
|
||
|
||
from server.db.repository.knowledge_base_repository import (
|
||
add_kb_to_db, delete_kb_from_db, list_kbs_from_db, kb_exists,
|
||
load_kb_from_db, get_kb_detail,
|
||
)
|
||
from server.db.repository.knowledge_file_repository import (
|
||
add_file_to_db, delete_file_from_db, delete_files_from_db, file_exists_in_db,
|
||
count_files_from_db, list_files_from_db, get_file_detail, delete_file_from_db,
|
||
list_docs_from_db,
|
||
)
|
||
|
||
from configs import (kbs_config, VECTOR_SEARCH_TOP_K, SCORE_THRESHOLD,
|
||
EMBEDDING_MODEL)
|
||
from server.knowledge_base.utils import (
|
||
get_kb_path, get_doc_path, load_embeddings, KnowledgeFile,
|
||
list_kbs_from_folder, list_files_from_folder,
|
||
)
|
||
from server.utils import embedding_device
|
||
from typing import List, Union, Dict, Optional
|
||
|
||
|
||
class SupportedVSType:
|
||
FAISS = 'faiss'
|
||
MILVUS = 'milvus'
|
||
DEFAULT = 'default'
|
||
PG = 'pg'
|
||
|
||
|
||
class KBService(ABC):
|
||
|
||
def __init__(self,
|
||
knowledge_base_name: str,
|
||
embed_model: str = EMBEDDING_MODEL,
|
||
):
|
||
self.kb_name = knowledge_base_name
|
||
self.embed_model = embed_model
|
||
self.kb_path = get_kb_path(self.kb_name)
|
||
self.doc_path = get_doc_path(self.kb_name)
|
||
self.do_init()
|
||
|
||
def _load_embeddings(self, embed_device: str = embedding_device()) -> Embeddings:
|
||
return load_embeddings(self.embed_model, embed_device)
|
||
|
||
def save_vector_store(self):
|
||
'''
|
||
保存向量库:FAISS保存到磁盘,milvus保存到数据库。PGVector暂未支持
|
||
'''
|
||
pass
|
||
|
||
def create_kb(self):
|
||
"""
|
||
创建知识库
|
||
"""
|
||
if not os.path.exists(self.doc_path):
|
||
os.makedirs(self.doc_path)
|
||
self.do_create_kb()
|
||
status = add_kb_to_db(self.kb_name, self.vs_type(), self.embed_model)
|
||
return status
|
||
|
||
def clear_vs(self):
|
||
"""
|
||
删除向量库中所有内容
|
||
"""
|
||
self.do_clear_vs()
|
||
status = delete_files_from_db(self.kb_name)
|
||
return status
|
||
|
||
def drop_kb(self):
|
||
"""
|
||
删除知识库
|
||
"""
|
||
self.do_drop_kb()
|
||
status = delete_kb_from_db(self.kb_name)
|
||
return status
|
||
|
||
def add_doc(self, kb_file: KnowledgeFile, docs: List[Document] = [], **kwargs):
|
||
"""
|
||
向知识库添加文件
|
||
如果指定了docs,则不再将文本向量化,并将数据库对应条目标为custom_docs=True
|
||
"""
|
||
if docs:
|
||
custom_docs = True
|
||
for doc in docs:
|
||
doc.metadata.setdefault("source", kb_file.filepath)
|
||
else:
|
||
docs = kb_file.file2text()
|
||
custom_docs = False
|
||
|
||
if docs:
|
||
self.delete_doc(kb_file)
|
||
doc_infos = self.do_add_doc(docs, **kwargs)
|
||
status = add_file_to_db(kb_file,
|
||
custom_docs=custom_docs,
|
||
docs_count=len(docs),
|
||
doc_infos=doc_infos)
|
||
else:
|
||
status = False
|
||
return status
|
||
|
||
def delete_doc(self, kb_file: KnowledgeFile, delete_content: bool = False, **kwargs):
|
||
"""
|
||
从知识库删除文件
|
||
"""
|
||
self.do_delete_doc(kb_file, **kwargs)
|
||
status = delete_file_from_db(kb_file)
|
||
if delete_content and os.path.exists(kb_file.filepath):
|
||
os.remove(kb_file.filepath)
|
||
return status
|
||
|
||
def update_doc(self, kb_file: KnowledgeFile, docs: List[Document] = [], **kwargs):
|
||
"""
|
||
使用content中的文件更新向量库
|
||
如果指定了docs,则使用自定义docs,并将数据库对应条目标为custom_docs=True
|
||
"""
|
||
if os.path.exists(kb_file.filepath):
|
||
self.delete_doc(kb_file, **kwargs)
|
||
return self.add_doc(kb_file, docs=docs, **kwargs)
|
||
|
||
def exist_doc(self, file_name: str):
|
||
return file_exists_in_db(KnowledgeFile(knowledge_base_name=self.kb_name,
|
||
filename=file_name))
|
||
|
||
def list_files(self):
|
||
return list_files_from_db(self.kb_name)
|
||
|
||
def count_files(self):
|
||
return count_files_from_db(self.kb_name)
|
||
|
||
def search_docs(self,
|
||
query: str,
|
||
top_k: int = VECTOR_SEARCH_TOP_K,
|
||
score_threshold: float = SCORE_THRESHOLD,
|
||
):
|
||
embeddings = self._load_embeddings()
|
||
docs = self.do_search(query, top_k, score_threshold, embeddings)
|
||
return docs
|
||
|
||
def get_doc_by_id(self, id: str) -> Optional[Document]:
|
||
return None
|
||
|
||
def list_docs(self, file_name: str = None, metadata: Dict = {}) -> List[Document]:
|
||
'''
|
||
通过file_name或metadata检索Document
|
||
'''
|
||
doc_infos = list_docs_from_db(kb_name=self.kb_name, file_name=file_name, metadata=metadata)
|
||
docs = [self.get_doc_by_id(x["id"]) for x in doc_infos]
|
||
return docs
|
||
|
||
@abstractmethod
|
||
def do_create_kb(self):
|
||
"""
|
||
创建知识库子类实自己逻辑
|
||
"""
|
||
pass
|
||
|
||
@staticmethod
|
||
def list_kbs_type():
|
||
return list(kbs_config.keys())
|
||
|
||
@classmethod
|
||
def list_kbs(cls):
|
||
return list_kbs_from_db()
|
||
|
||
def exists(self, kb_name: str = None):
|
||
kb_name = kb_name or self.kb_name
|
||
return kb_exists(kb_name)
|
||
|
||
@abstractmethod
|
||
def vs_type(self) -> str:
|
||
pass
|
||
|
||
@abstractmethod
|
||
def do_init(self):
|
||
pass
|
||
|
||
@abstractmethod
|
||
def do_drop_kb(self):
|
||
"""
|
||
删除知识库子类实自己逻辑
|
||
"""
|
||
pass
|
||
|
||
@abstractmethod
|
||
def do_search(self,
|
||
query: str,
|
||
top_k: int,
|
||
score_threshold: float,
|
||
embeddings: Embeddings,
|
||
) -> List[Document]:
|
||
"""
|
||
搜索知识库子类实自己逻辑
|
||
"""
|
||
pass
|
||
|
||
@abstractmethod
|
||
def do_add_doc(self,
|
||
docs: List[Document],
|
||
) -> List[Dict]:
|
||
"""
|
||
向知识库添加文档子类实自己逻辑
|
||
"""
|
||
pass
|
||
|
||
@abstractmethod
|
||
def do_delete_doc(self,
|
||
kb_file: KnowledgeFile):
|
||
"""
|
||
从知识库删除文档子类实自己逻辑
|
||
"""
|
||
pass
|
||
|
||
@abstractmethod
|
||
def do_clear_vs(self):
|
||
"""
|
||
从知识库删除全部向量子类实自己逻辑
|
||
"""
|
||
pass
|
||
|
||
|
||
class KBServiceFactory:
|
||
|
||
@staticmethod
|
||
def get_service(kb_name: str,
|
||
vector_store_type: Union[str, SupportedVSType],
|
||
embed_model: str = EMBEDDING_MODEL,
|
||
) -> KBService:
|
||
if isinstance(vector_store_type, str):
|
||
vector_store_type = getattr(SupportedVSType, vector_store_type.upper())
|
||
if SupportedVSType.FAISS == vector_store_type:
|
||
from server.knowledge_base.kb_service.faiss_kb_service import FaissKBService
|
||
return FaissKBService(kb_name, embed_model=embed_model)
|
||
if SupportedVSType.PG == vector_store_type:
|
||
from server.knowledge_base.kb_service.pg_kb_service import PGKBService
|
||
return PGKBService(kb_name, embed_model=embed_model)
|
||
elif SupportedVSType.MILVUS == vector_store_type:
|
||
from server.knowledge_base.kb_service.milvus_kb_service import MilvusKBService
|
||
return MilvusKBService(kb_name,
|
||
embed_model=embed_model) # other milvus parameters are set in model_config.kbs_config
|
||
elif SupportedVSType.DEFAULT == vector_store_type: # kb_exists of default kbservice is False, to make validation easier.
|
||
from server.knowledge_base.kb_service.default_kb_service import DefaultKBService
|
||
return DefaultKBService(kb_name)
|
||
|
||
@staticmethod
|
||
def get_service_by_name(kb_name: str
|
||
) -> KBService:
|
||
_, vs_type, embed_model = load_kb_from_db(kb_name)
|
||
if vs_type is None and os.path.isdir(get_kb_path(kb_name)): # faiss knowledge base not in db
|
||
vs_type = "faiss"
|
||
return KBServiceFactory.get_service(kb_name, vs_type, embed_model)
|
||
|
||
@staticmethod
|
||
def get_default():
|
||
return KBServiceFactory.get_service("default", SupportedVSType.DEFAULT)
|
||
|
||
|
||
def get_kb_details() -> List[Dict]:
|
||
kbs_in_folder = list_kbs_from_folder()
|
||
kbs_in_db = KBService.list_kbs()
|
||
result = {}
|
||
|
||
for kb in kbs_in_folder:
|
||
result[kb] = {
|
||
"kb_name": kb,
|
||
"vs_type": "",
|
||
"embed_model": "",
|
||
"file_count": 0,
|
||
"create_time": None,
|
||
"in_folder": True,
|
||
"in_db": False,
|
||
}
|
||
|
||
for kb in kbs_in_db:
|
||
kb_detail = get_kb_detail(kb)
|
||
if kb_detail:
|
||
kb_detail["in_db"] = True
|
||
if kb in result:
|
||
result[kb].update(kb_detail)
|
||
else:
|
||
kb_detail["in_folder"] = False
|
||
result[kb] = kb_detail
|
||
|
||
data = []
|
||
for i, v in enumerate(result.values()):
|
||
v['No'] = i + 1
|
||
data.append(v)
|
||
|
||
return data
|
||
|
||
|
||
def get_kb_file_details(kb_name: str) -> List[Dict]:
|
||
kb = KBServiceFactory.get_service_by_name(kb_name)
|
||
files_in_folder = list_files_from_folder(kb_name)
|
||
files_in_db = kb.list_files()
|
||
result = {}
|
||
|
||
for doc in files_in_folder:
|
||
result[doc] = {
|
||
"kb_name": kb_name,
|
||
"file_name": doc,
|
||
"file_ext": os.path.splitext(doc)[-1],
|
||
"file_version": 0,
|
||
"document_loader": "",
|
||
"docs_count": 0,
|
||
"text_splitter": "",
|
||
"create_time": None,
|
||
"in_folder": True,
|
||
"in_db": False,
|
||
}
|
||
for doc in files_in_db:
|
||
doc_detail = get_file_detail(kb_name, doc)
|
||
if doc_detail:
|
||
doc_detail["in_db"] = True
|
||
if doc in result:
|
||
result[doc].update(doc_detail)
|
||
else:
|
||
doc_detail["in_folder"] = False
|
||
result[doc] = doc_detail
|
||
|
||
data = []
|
||
for i, v in enumerate(result.values()):
|
||
v['No'] = i + 1
|
||
data.append(v)
|
||
|
||
return data
|
||
|
||
|
||
class EmbeddingsFunAdapter(Embeddings):
|
||
|
||
def __init__(self, embeddings: Embeddings):
|
||
self.embeddings = embeddings
|
||
|
||
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
||
return normalize(self.embeddings.embed_documents(texts))
|
||
|
||
def embed_query(self, text: str) -> List[float]:
|
||
query_embed = self.embeddings.embed_query(text)
|
||
query_embed_2d = np.reshape(query_embed, (1, -1)) # 将一维数组转换为二维数组
|
||
normalized_query_embed = normalize(query_embed_2d)
|
||
return normalized_query_embed[0].tolist() # 将结果转换为一维数组并返回
|
||
|
||
async def aembed_documents(self, texts: List[str]) -> List[List[float]]:
|
||
return await normalize(self.embeddings.aembed_documents(texts))
|
||
|
||
async def aembed_query(self, text: str) -> List[float]:
|
||
return await normalize(self.embeddings.aembed_query(text))
|
||
|
||
|
||
def score_threshold_process(score_threshold, k, docs):
|
||
if score_threshold is not None:
|
||
cmp = (
|
||
operator.le
|
||
)
|
||
docs = [
|
||
(doc, similarity)
|
||
for doc, similarity in docs
|
||
if cmp(similarity, score_threshold)
|
||
]
|
||
return docs[:k]
|