mirror of
https://github.com/RYDE-WORK/Langchain-Chatchat.git
synced 2026-01-19 21:37:20 +08:00
* 优化configs (#1474) * remove llm_model_dict * optimize configs * fix get_model_path * 更改一些默认参数,添加千帆的默认配置 * Update server_config.py.example * fix merge conflict for #1474 (#1494) * 修复ChatGPT api_base_url错误;用户可以在model_config在线模型配置中覆盖默认的api_base_url (#1496) * 优化LLM模型列表获取、切换的逻辑: (#1497) 1、更准确的获取未运行的可用模型 2、优化WEBUI模型列表显示与切换的控制逻辑 * 更新migrate.py和init_database.py,加强知识库迁移工具: (#1498) 1. 添加--update-in-db参数,按照数据库信息,从本地文件更新向量库 2. 添加--increament参数,根据本地文件增量更新向量库 3. 添加--prune-db参数,删除本地文件后,自动清理相关的向量库 4. 添加--prune-folder参数,根据数据库信息,清理无用的本地文件 5. 取消--update-info-only参数。数据库中存储了向量库信息,该操作意义不大 6. 添加--kb-name参数,所有操作支持指定操作的知识库,不指定则为所有本地知识库 7. 添加知识库迁移的测试用例 8. 删除milvus_kb_service的save_vector_store方法 * feat: support volc fangzhou * 使火山方舟正常工作,添加错误处理和测试用例 * feat: support volc fangzhou (#1501) * feat: support volc fangzhou --------- Co-authored-by: liunux4odoo <41217877+liunux4odoo@users.noreply.github.com> Co-authored-by: liqiankun.1111 <liqiankun.1111@bytedance.com> * 第一版初步agent实现 (#1503) * 第一版初步agent实现 * 增加steaming参数 * 修改了weather.py --------- Co-authored-by: zR <zRzRzRzRzRzRzR> * 添加configs/prompt_config.py,允许用户自定义prompt模板: (#1504) 1、 默认包含2个模板,分别用于LLM对话,知识库和搜索引擎对话 2、 server/utils.py提供函数get_prompt_template,获取指定的prompt模板内容(支持热加载) 3、 api.py中chat/knowledge_base_chat/search_engine_chat接口支持prompt_name参数 * 增加其它模型的参数适配 * 增加传入矢量名称加载 * 1. 搜索引擎问答支持历史记录; 2. 修复知识库问答历史记录传参错误:用户输入被传入history,问题出在webui中重复获取历史消息,api知识库对话接口并无问题。 * langchain日志开关 * move wrap_done & get_ChatOpenAI from server.chat.utils to server.utils (#1506) * 修复faiss_pool知识库缓存key错误 (#1507) * fix ReadMe anchor link (#1500) * fix : Duplicate variable and function name (#1509) Co-authored-by: Jim <zhangpengyi@taijihuabao.com> * Update README.md * fix #1519: streamlit-chatbox旧版BUG,但新版有兼容问题,先在webui中作处理,并限定chatbox版本 (#1525) close #1519 * 【功能新增】在线 LLM 模型支持阿里云通义千问 (#1534) * feat: add qwen-api * 使Qwen API支持temperature参数;添加测试用例 * 将online-api的sdk列为可选依赖 --------- Co-authored-by: liunux4odoo <liunux@qq.com> * 处理序列化至磁盘的逻辑 * remove depends on volcengine * update kb_doc_api: use Form instead of Body when upload file * 将所有httpx请求改为使用Client,提高效率,方便以后设置代理等。 (#1554) 将所有httpx请求改为使用Client,提高效率,方便以后设置代理等。 将本项目相关服务加入无代理列表,避免fastchat的服务器请求错误。(windows下无效) * update QR code * update readme_en,readme,requirements_api,requirements,model_config.py.example:测试baichuan2-7b;更新相关文档 * 新增特性:1.支持vllm推理加速框架;2. 更新支持模型列表 * 更新文件:1. startup,model_config.py.example,serve_config.py.example,FAQ * 1. debug vllm加速框架完毕;2. 修改requirements,requirements_api对vllm的依赖;3.注释掉serve_config中baichuan-7b的device为cpu的配置 * 1. 更新congif中关于vllm后端相关说明;2. 更新requirements,requirements_api; * 增加了仅限GPT4的agent功能,陆续补充,中文版readme已写 (#1611) * Dev (#1613) * 增加了仅限GPT4的agent功能,陆续补充,中文版readme已写 * issue提到的一个bug * 温度最小改成0,但是不应该支持负数 * 修改了最小的温度 * fix: set vllm based on platform to avoid error on windows * fix: langchain warnings for import from root * 修复webui中重建知识库以及对话界面UI错误 (#1615) * 修复bug:webui点重建知识库时,如果存在不支持的文件会导致整个接口错误;migrate中没有导入CHUNK_SIZE * 修复:webui对话界面的expander一直为running状态;简化历史消息获取方法 * 根据官方文档,添加对英文版的bge embedding的指示模板 (#1585) Co-authored-by: zR <2448370773@qq.com> * Dev (#1618) * 增加了仅限GPT4的agent功能,陆续补充,中文版readme已写 * issue提到的一个bug * 温度最小改成0,但是不应该支持负数 * 修改了最小的温度 * 增加了部分Agent支持和修改了启动文件的部分bug * 修改了GPU数量配置文件 * 1 1 * 修复配置文件错误 * 更新readme,稳定测试 * 更改readme 0928 (#1619) * 增加了仅限GPT4的agent功能,陆续补充,中文版readme已写 * issue提到的一个bug * 温度最小改成0,但是不应该支持负数 * 修改了最小的温度 * 增加了部分Agent支持和修改了启动文件的部分bug * 修改了GPU数量配置文件 * 1 1 * 修复配置文件错误 * 更新readme,稳定测试 * 更新readme * fix readme * 处理序列化至磁盘的逻辑 * update version number to v0.2.5 --------- Co-authored-by: qiankunli <qiankun.li@qq.com> Co-authored-by: liqiankun.1111 <liqiankun.1111@bytedance.com> Co-authored-by: zR <2448370773@qq.com> Co-authored-by: glide-the <2533736852@qq.com> Co-authored-by: Water Zheng <1499383852@qq.com> Co-authored-by: Jim Zhang <dividi_z@163.com> Co-authored-by: Jim <zhangpengyi@taijihuabao.com> Co-authored-by: imClumsyPanda <littlepanda0716@gmail.com> Co-authored-by: Leego <leegodev@hotmail.com> Co-authored-by: hzg0601 <hzg0601@163.com> Co-authored-by: WilliamChen-luckbob <58684828+WilliamChen-luckbob@users.noreply.github.com>
151 lines
5.5 KiB
Python
151 lines
5.5 KiB
Python
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
|
from langchain.embeddings.openai import OpenAIEmbeddings
|
|
from langchain.embeddings import HuggingFaceBgeEmbeddings
|
|
from langchain.embeddings.base import Embeddings
|
|
from langchain.schema import Document
|
|
import threading
|
|
from configs import (EMBEDDING_MODEL, CHUNK_SIZE, CACHED_VS_NUM,
|
|
logger, log_verbose)
|
|
from server.utils import embedding_device, get_model_path
|
|
from contextlib import contextmanager
|
|
from collections import OrderedDict
|
|
from typing import List, Any, Union, Tuple
|
|
|
|
|
|
class ThreadSafeObject:
|
|
def __init__(self, key: Union[str, Tuple], obj: Any = None, pool: "CachePool" = None):
|
|
self._obj = obj
|
|
self._key = key
|
|
self._pool = pool
|
|
self._lock = threading.RLock()
|
|
self._loaded = threading.Event()
|
|
|
|
def __repr__(self) -> str:
|
|
cls = type(self).__name__
|
|
return f"<{cls}: key: {self.key}, obj: {self._obj}>"
|
|
|
|
@property
|
|
def key(self):
|
|
return self._key
|
|
|
|
@contextmanager
|
|
def acquire(self, owner: str = "", msg: str = ""):
|
|
owner = owner or f"thread {threading.get_native_id()}"
|
|
try:
|
|
self._lock.acquire()
|
|
if self._pool is not None:
|
|
self._pool._cache.move_to_end(self.key)
|
|
if log_verbose:
|
|
logger.info(f"{owner} 开始操作:{self.key}。{msg}")
|
|
yield self._obj
|
|
finally:
|
|
if log_verbose:
|
|
logger.info(f"{owner} 结束操作:{self.key}。{msg}")
|
|
self._lock.release()
|
|
|
|
def start_loading(self):
|
|
self._loaded.clear()
|
|
|
|
def finish_loading(self):
|
|
self._loaded.set()
|
|
|
|
def wait_for_loading(self):
|
|
self._loaded.wait()
|
|
|
|
@property
|
|
def obj(self):
|
|
return self._obj
|
|
|
|
@obj.setter
|
|
def obj(self, val: Any):
|
|
self._obj = val
|
|
|
|
|
|
class CachePool:
|
|
def __init__(self, cache_num: int = -1):
|
|
self._cache_num = cache_num
|
|
self._cache = OrderedDict()
|
|
self.atomic = threading.RLock()
|
|
|
|
def keys(self) -> List[str]:
|
|
return list(self._cache.keys())
|
|
|
|
def _check_count(self):
|
|
if isinstance(self._cache_num, int) and self._cache_num > 0:
|
|
while len(self._cache) > self._cache_num:
|
|
self._cache.popitem(last=False)
|
|
|
|
def get(self, key: str) -> ThreadSafeObject:
|
|
if cache := self._cache.get(key):
|
|
cache.wait_for_loading()
|
|
return cache
|
|
|
|
def set(self, key: str, obj: ThreadSafeObject) -> ThreadSafeObject:
|
|
self._cache[key] = obj
|
|
self._check_count()
|
|
return obj
|
|
|
|
def pop(self, key: str = None) -> ThreadSafeObject:
|
|
if key is None:
|
|
return self._cache.popitem(last=False)
|
|
else:
|
|
return self._cache.pop(key, None)
|
|
|
|
def acquire(self, key: Union[str, Tuple], owner: str = "", msg: str = ""):
|
|
cache = self.get(key)
|
|
if cache is None:
|
|
raise RuntimeError(f"请求的资源 {key} 不存在")
|
|
elif isinstance(cache, ThreadSafeObject):
|
|
self._cache.move_to_end(key)
|
|
return cache.acquire(owner=owner, msg=msg)
|
|
else:
|
|
return cache
|
|
|
|
def load_kb_embeddings(self, kb_name: str=None, embed_device: str = embedding_device()) -> Embeddings:
|
|
from server.db.repository.knowledge_base_repository import get_kb_detail
|
|
|
|
kb_detail = get_kb_detail(kb_name=kb_name)
|
|
print(kb_detail)
|
|
embed_model = kb_detail.get("embed_model", EMBEDDING_MODEL)
|
|
return embeddings_pool.load_embeddings(model=embed_model, device=embed_device)
|
|
|
|
|
|
class EmbeddingsPool(CachePool):
|
|
def load_embeddings(self, model: str, device: str) -> Embeddings:
|
|
self.atomic.acquire()
|
|
model = model or EMBEDDING_MODEL
|
|
device = device or embedding_device()
|
|
key = (model, device)
|
|
if not self.get(key):
|
|
item = ThreadSafeObject(key, pool=self)
|
|
self.set(key, item)
|
|
with item.acquire(msg="初始化"):
|
|
self.atomic.release()
|
|
if model == "text-embedding-ada-002": # openai text-embedding-ada-002
|
|
embeddings = OpenAIEmbeddings(openai_api_key=get_model_path(model), chunk_size=CHUNK_SIZE)
|
|
elif 'bge-' in model:
|
|
if 'zh' in model:
|
|
# for chinese model
|
|
query_instruction = "为这个句子生成表示以用于检索相关文章:"
|
|
elif 'en' in model:
|
|
# for english model
|
|
query_instruction = "Represent this sentence for searching relevant passages:"
|
|
else:
|
|
# maybe ReRanker or else, just use empty string instead
|
|
query_instruction = ""
|
|
embeddings = HuggingFaceBgeEmbeddings(model_name=embedding_model_dict[model],
|
|
model_kwargs={'device': device},
|
|
query_instruction=query_instruction)
|
|
if model == "bge-large-zh-noinstruct": # bge large -noinstruct embedding
|
|
embeddings.query_instruction = ""
|
|
else:
|
|
embeddings = HuggingFaceEmbeddings(model_name=get_model_path(model), model_kwargs={'device': device})
|
|
item.obj = embeddings
|
|
item.finish_loading()
|
|
else:
|
|
self.atomic.release()
|
|
return self.get(key).obj
|
|
|
|
|
|
embeddings_pool = EmbeddingsPool(cache_num=1)
|