liunux4odoo b51ba11f45
支持通过配置项同时启动多个模型,将Wiki纳入samples知识库 (#2002)
新功能:
- 将 LLM_MODEL 配置项改为 LLM_MODELS 列表,同时启动多个模型
- 将 wiki 纳入 samples 知识库

依赖变化:
- 指定 streamlit~=1.27.0。1.26.0会报rerun错误,1.28.0会有无限刷新错误

修复优化:
- 优化 get_default_llm_model 逻辑
- 适配 Qwen 在线 API 做 Embeddings 时最大 25 行的限制
- 列出知识库磁盘文件时跳过 . 开头的文件
2023-11-09 22:15:52 +08:00

84 lines
4.0 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

from fastapi import Body
from fastapi.responses import StreamingResponse
from configs import LLM_MODELS, TEMPERATURE, SAVE_CHAT_HISTORY
from server.utils import wrap_done, get_ChatOpenAI
from langchain.chains import LLMChain
from langchain.callbacks import AsyncIteratorCallbackHandler
from typing import AsyncIterable
import asyncio
import json
from langchain.prompts.chat import ChatPromptTemplate
from typing import List, Optional
from server.chat.utils import History
from server.utils import get_prompt_template
from server.db.repository import add_chat_history_to_db, update_chat_history
async def chat(query: str = Body(..., description="用户输入", examples=["恼羞成怒"]),
history: List[History] = Body([],
description="历史对话",
examples=[[
{"role": "user", "content": "我们来玩成语接龙,我先来,生龙活虎"},
{"role": "assistant", "content": "虎头虎脑"}]]
),
stream: bool = Body(False, description="流式输出"),
model_name: str = Body(LLM_MODELS[0], description="LLM 模型名称。"),
temperature: float = Body(TEMPERATURE, description="LLM 采样温度", ge=0.0, le=1.0),
max_tokens: Optional[int] = Body(None, description="限制LLM生成Token数量默认None代表模型最大值"),
# top_p: float = Body(TOP_P, description="LLM 核采样。勿与temperature同时设置", gt=0.0, lt=1.0),
prompt_name: str = Body("default", description="使用的prompt模板名称(在configs/prompt_config.py中配置)"),
):
history = [History.from_data(h) for h in history]
async def chat_iterator(query: str,
history: List[History] = [],
model_name: str = LLM_MODELS[0],
prompt_name: str = prompt_name,
) -> AsyncIterable[str]:
callback = AsyncIteratorCallbackHandler()
model = get_ChatOpenAI(
model_name=model_name,
temperature=temperature,
max_tokens=max_tokens,
callbacks=[callback],
)
prompt_template = get_prompt_template("llm_chat", prompt_name)
input_msg = History(role="user", content=prompt_template).to_msg_template(False)
chat_prompt = ChatPromptTemplate.from_messages(
[i.to_msg_template() for i in history] + [input_msg])
chain = LLMChain(prompt=chat_prompt, llm=model)
# Begin a task that runs in the background.
task = asyncio.create_task(wrap_done(
chain.acall({"input": query}),
callback.done),
)
answer = ""
chat_history_id = add_chat_history_to_db(chat_type="llm_chat", query=query)
if stream:
async for token in callback.aiter():
answer += token
# Use server-sent-events to stream the response
yield json.dumps(
{"text": token, "chat_history_id": chat_history_id},
ensure_ascii=False)
else:
async for token in callback.aiter():
answer += token
yield json.dumps(
{"text": answer, "chat_history_id": chat_history_id},
ensure_ascii=False)
if SAVE_CHAT_HISTORY and len(chat_history_id) > 0:
# 后续可以加入一些其他信息比如真实的prompt等
update_chat_history(chat_history_id, response=answer)
await task
return StreamingResponse(chat_iterator(query=query,
history=history,
model_name=model_name,
prompt_name=prompt_name),
media_type="text/event-stream")