liunux4odoo b4c68ddd05
优化在线 API ,支持 completion 和 embedding,简化在线 API 开发方式 (#1886)
* 优化在线 API ,支持 completion 和 embedding,简化在线 API 开发方式

新功能
- 智谱AI、Minimax、千帆、千问 4 个在线模型支持 embeddings(不通过Fastchat,后续会单独提供相关api接口)
- 在线模型自动检测传入参数,在传入非 messages 格式的 prompt 时,自动转换为 completion 形式,以支持 completion 接口

开发者:
- 重构ApiModelWorker:
  - 所有在线 API 请求封装到 do_chat 方法:自动传入参数 ApiChatParams,简化参数与配置项的获取;自动处理与fastchat的接口
  - 加强 API 请求错误处理,返回更有意义的信息
  - 改用 qianfan sdk 重写 qianfan-api
  - 将所有在线模型的测试用例统一在一起,简化测试用例编写

* Delete requirements_langflow.txt
2023-10-26 22:44:48 +08:00

195 lines
7.1 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import sys
from fastchat.conversation import Conversation
from server.model_workers.base import *
from fastchat import conversation as conv
import sys
from server.model_workers.base import ApiEmbeddingsParams
from typing import List, Literal, Dict
# MODEL_VERSIONS = {
# "ernie-bot": "completions",
# "ernie-bot-turbo": "eb-instant",
# "bloomz-7b": "bloomz_7b1",
# "qianfan-bloomz-7b-c": "qianfan_bloomz_7b_compressed",
# "llama2-7b-chat": "llama_2_7b",
# "llama2-13b-chat": "llama_2_13b",
# "llama2-70b-chat": "llama_2_70b",
# "qianfan-llama2-ch-7b": "qianfan_chinese_llama_2_7b",
# "chatglm2-6b-32k": "chatglm2_6b_32k",
# "aquilachat-7b": "aquilachat_7b",
# # "linly-llama2-ch-7b": "", # 暂未发布
# # "linly-llama2-ch-13b": "", # 暂未发布
# # "chatglm2-6b": "", # 暂未发布
# # "chatglm2-6b-int4": "", # 暂未发布
# # "falcon-7b": "", # 暂未发布
# # "falcon-180b-chat": "", # 暂未发布
# # "falcon-40b": "", # 暂未发布
# # "rwkv4-world": "", # 暂未发布
# # "rwkv5-world": "", # 暂未发布
# # "rwkv4-pile-14b": "", # 暂未发布
# # "rwkv4-raven-14b": "", # 暂未发布
# # "open-llama-7b": "", # 暂未发布
# # "dolly-12b": "", # 暂未发布
# # "mpt-7b-instruct": "", # 暂未发布
# # "mpt-30b-instruct": "", # 暂未发布
# # "OA-Pythia-12B-SFT-4": "", # 暂未发布
# # "xverse-13b": "", # 暂未发布
# # # 以下为企业测试,需要单独申请
# # "flan-ul2": "",
# # "Cerebras-GPT-6.7B": ""
# # "Pythia-6.9B": ""
# }
# @cached(TTLCache(1, 1800)) # 经过测试缓存的token可以使用目前每30分钟刷新一次
# def get_baidu_access_token(api_key: str, secret_key: str) -> str:
# """
# 使用 AKSK 生成鉴权签名Access Token
# :return: access_token或是None(如果错误)
# """
# url = "https://aip.baidubce.com/oauth/2.0/token"
# params = {"grant_type": "client_credentials", "client_id": api_key, "client_secret": secret_key}
# try:
# with get_httpx_client() as client:
# return client.get(url, params=params).json().get("access_token")
# except Exception as e:
# print(f"failed to get token from baidu: {e}")
class QianFanWorker(ApiModelWorker):
"""
百度千帆
"""
DEFAULT_EMBED_MODEL = "bge-large-zh"
def __init__(
self,
*,
version: Literal["ernie-bot", "ernie-bot-turbo"] = "ernie-bot",
model_names: List[str] = ["qianfan-api"],
controller_addr: str = None,
worker_addr: str = None,
**kwargs,
):
kwargs.update(model_names=model_names, controller_addr=controller_addr, worker_addr=worker_addr)
kwargs.setdefault("context_len", 16384)
super().__init__(**kwargs)
self.version = version
def do_chat(self, params: ApiChatParams) -> Dict:
params.load_config(self.model_names[0])
import qianfan
comp = qianfan.ChatCompletion(model=params.version,
endpoint=params.version_url,
ak=params.api_key,
sk=params.secret_key,)
text = ""
for resp in comp.do(messages=params.messages,
temperature=params.temperature,
top_p=params.top_p,
stream=True):
if resp.code == 200:
if chunk := resp.body.get("result"):
text += chunk
yield {
"error_code": 0,
"text": text
}
else:
yield {
"error_code": resp.code,
"text": str(resp.body),
}
# BASE_URL = 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat'\
# '/{model_version}?access_token={access_token}'
# access_token = get_baidu_access_token(params.api_key, params.secret_key)
# if not access_token:
# yield {
# "error_code": 403,
# "text": f"failed to get access token. have you set the correct api_key and secret key?",
# }
# url = BASE_URL.format(
# model_version=params.version_url or MODEL_VERSIONS[params.version],
# access_token=access_token,
# )
# payload = {
# "messages": params.messages,
# "temperature": params.temperature,
# "stream": True
# }
# headers = {
# 'Content-Type': 'application/json',
# 'Accept': 'application/json',
# }
# text = ""
# with get_httpx_client() as client:
# with client.stream("POST", url, headers=headers, json=payload) as response:
# for line in response.iter_lines():
# if not line.strip():
# continue
# if line.startswith("data: "):
# line = line[6:]
# resp = json.loads(line)
# if "result" in resp.keys():
# text += resp["result"]
# yield {
# "error_code": 0,
# "text": text
# }
# else:
# yield {
# "error_code": resp["error_code"],
# "text": resp["error_msg"]
# }
def do_embeddings(self, params: ApiEmbeddingsParams) -> Dict:
import qianfan
params.load_config(self.model_names[0])
embed = qianfan.Embedding(ak=params.api_key, sk=params.secret_key)
resp = embed.do(texts = params.texts, model=params.embed_model or self.DEFAULT_EMBED_MODEL)
if resp.code == 200:
embeddings = [x.embedding for x in resp.body.get("data", [])]
return {"code": 200, "embeddings": embeddings}
else:
return {"code": resp.code, "msg": str(resp.body)}
# TODO: qianfan支持续写模型
def get_embeddings(self, params):
# TODO: 支持embeddings
print("embedding")
print(params)
def make_conv_template(self, conv_template: str = None, model_path: str = None) -> Conversation:
# TODO: 确认模板是否需要修改
return conv.Conversation(
name=self.model_names[0],
system_message="你是一个聪明的助手,请根据用户的提示来完成任务",
messages=[],
roles=["user", "assistant"],
sep="\n### ",
stop_str="###",
)
if __name__ == "__main__":
import uvicorn
from server.utils import MakeFastAPIOffline
from fastchat.serve.model_worker import app
worker = QianFanWorker(
controller_addr="http://127.0.0.1:20001",
worker_addr="http://127.0.0.1:21004"
)
sys.modules["fastchat.serve.model_worker"].worker = worker
MakeFastAPIOffline(app)
uvicorn.run(app, port=21004)