liunux4odoo 9c525b7fa5
publish 0.2.10 (#2797)
新功能:
- 优化 PDF 文件的 OCR,过滤无意义的小图片 by @liunux4odoo #2525
- 支持 Gemini 在线模型 by @yhfgyyf #2630
- 支持 GLM4 在线模型 by @zRzRzRzRzRzRzR
- elasticsearch更新https连接 by @xldistance #2390
- 增强对PPT、DOC知识库文件的OCR识别 by @596192804 #2013
- 更新 Agent 对话功能 by @zRzRzRzRzRzRzR
- 每次创建对象时从连接池获取连接,避免每次执行方法时都新建连接 by @Lijia0 #2480
- 实现 ChatOpenAI 判断token有没有超过模型的context上下文长度 by @glide-the
- 更新运行数据库报错和项目里程碑 by @zRzRzRzRzRzRzR #2659
- 更新配置文件/文档/依赖 by @imClumsyPanda @zRzRzRzRzRzRzR
- 添加日文版 readme by @eltociear #2787

修复:
- langchain 更新后,PGVector 向量库连接错误 by @HALIndex #2591
- Minimax's model worker 错误 by @xyhshen 
- ES库无法向量检索.添加mappings创建向量索引 by MSZheng20 #2688
2024-01-26 06:58:49 +08:00

107 lines
3.5 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

from fastchat.conversation import Conversation
from server.model_workers.base import *
from fastchat import conversation as conv
import sys
from typing import List, Dict, Iterator, Literal
from configs import logger, log_verbose
import requests
import jwt
import time
import json
def generate_token(apikey: str, exp_seconds: int):
try:
id, secret = apikey.split(".")
except Exception as e:
raise Exception("invalid apikey", e)
payload = {
"api_key": id,
"exp": int(round(time.time() * 1000)) + exp_seconds * 1000,
"timestamp": int(round(time.time() * 1000)),
}
return jwt.encode(
payload,
secret,
algorithm="HS256",
headers={"alg": "HS256", "sign_type": "SIGN"},
)
class ChatGLMWorker(ApiModelWorker):
def __init__(
self,
*,
model_names: List[str] = ["zhipu-api"],
controller_addr: str = None,
worker_addr: str = None,
version: Literal["chatglm_turbo"] = "chatglm_turbo",
**kwargs,
):
kwargs.update(model_names=model_names, controller_addr=controller_addr, worker_addr=worker_addr)
kwargs.setdefault("context_len", 4096)
super().__init__(**kwargs)
self.version = version
def do_chat(self, params: ApiChatParams) -> Iterator[Dict]:
params.load_config(self.model_names[0])
token = generate_token(params.api_key, 60)
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {token}"
}
data = {
"model": params.version,
"messages": params.messages,
"max_tokens": params.max_tokens,
"temperature": params.temperature,
"stream": False
}
url = "https://open.bigmodel.cn/api/paas/v4/chat/completions"
response = requests.post(url, headers=headers, json=data)
# for chunk in response.iter_lines():
# if chunk:
# chunk_str = chunk.decode('utf-8')
# json_start_pos = chunk_str.find('{"id"')
# if json_start_pos != -1:
# json_str = chunk_str[json_start_pos:]
# json_data = json.loads(json_str)
# for choice in json_data.get('choices', []):
# delta = choice.get('delta', {})
# content = delta.get('content', '')
# yield {"error_code": 0, "text": content}
ans = response.json()
content = ans["choices"][0]["message"]["content"]
yield {"error_code": 0, "text": content}
def get_embeddings(self, params):
# 临时解决方案不支持embedding
print("embedding")
print(params)
def make_conv_template(self, conv_template: str = None, model_path: str = None) -> Conversation:
return conv.Conversation(
name=self.model_names[0],
system_message="你是智谱AI小助手请根据用户的提示来完成任务",
messages=[],
roles=["user", "assistant", "system"],
sep="\n###",
stop_str="###",
)
if __name__ == "__main__":
import uvicorn
from server.utils import MakeFastAPIOffline
from fastchat.serve.model_worker import app
worker = ChatGLMWorker(
controller_addr="http://127.0.0.1:20001",
worker_addr="http://127.0.0.1:21001",
)
sys.modules["fastchat.serve.model_worker"].worker = worker
MakeFastAPIOffline(app)
uvicorn.run(app, port=21001)