liunux4odoo 9c525b7fa5
publish 0.2.10 (#2797)
新功能:
- 优化 PDF 文件的 OCR,过滤无意义的小图片 by @liunux4odoo #2525
- 支持 Gemini 在线模型 by @yhfgyyf #2630
- 支持 GLM4 在线模型 by @zRzRzRzRzRzRzR
- elasticsearch更新https连接 by @xldistance #2390
- 增强对PPT、DOC知识库文件的OCR识别 by @596192804 #2013
- 更新 Agent 对话功能 by @zRzRzRzRzRzRzR
- 每次创建对象时从连接池获取连接,避免每次执行方法时都新建连接 by @Lijia0 #2480
- 实现 ChatOpenAI 判断token有没有超过模型的context上下文长度 by @glide-the
- 更新运行数据库报错和项目里程碑 by @zRzRzRzRzRzRzR #2659
- 更新配置文件/文档/依赖 by @imClumsyPanda @zRzRzRzRzRzRzR
- 添加日文版 readme by @eltociear #2787

修复:
- langchain 更新后,PGVector 向量库连接错误 by @HALIndex #2591
- Minimax's model worker 错误 by @xyhshen 
- ES库无法向量检索.添加mappings创建向量索引 by MSZheng20 #2688
2024-01-26 06:58:49 +08:00

171 lines
6.6 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

from fastchat.conversation import Conversation
from server.model_workers.base import *
from fastchat import conversation as conv
import sys
import json
from server.model_workers.base import ApiEmbeddingsParams
from server.utils import get_httpx_client
from typing import List, Dict
from configs import logger, log_verbose
class MiniMaxWorker(ApiModelWorker):
DEFAULT_EMBED_MODEL = "embo-01"
def __init__(
self,
*,
model_names: List[str] = ["minimax-api"],
controller_addr: str = None,
worker_addr: str = None,
version: str = "abab5.5-chat",
**kwargs,
):
kwargs.update(model_names=model_names, controller_addr=controller_addr, worker_addr=worker_addr)
kwargs.setdefault("context_len", 16384)
super().__init__(**kwargs)
self.version = version
def validate_messages(self, messages: List[Dict]) -> List[Dict]:
role_maps = {
"USER": self.user_role,
"assistant": self.ai_role,
"system": "system",
}
messages = [{"sender_type": role_maps[x["role"]], "text": x["content"]} for x in messages]
return messages
def do_chat(self, params: ApiChatParams) -> Dict:
# 按照官网推荐直接调用abab 5.5模型
params.load_config(self.model_names[0])
url = 'https://api.minimax.chat/v1/text/chatcompletion{pro}?GroupId={group_id}'
pro = "_pro" if params.is_pro else ""
headers = {
"Authorization": f"Bearer {params.api_key}",
"Content-Type": "application/json",
}
messages = self.validate_messages(params.messages)
data = {
"model": params.version,
"stream": True,
"mask_sensitive_info": True,
"messages": messages,
"temperature": params.temperature,
"top_p": params.top_p,
"tokens_to_generate": params.max_tokens or 1024,
# 以下参数为minimax特有传入空值会出错。
# "prompt": params.system_message or self.conv.system_message,
# "bot_setting": [],
# "role_meta": params.role_meta,
}
if log_verbose:
logger.info(f'{self.__class__.__name__}:data: {data}')
logger.info(f'{self.__class__.__name__}:url: {url.format(pro=pro, group_id=params.group_id)}')
logger.info(f'{self.__class__.__name__}:headers: {headers}')
with get_httpx_client() as client:
response = client.stream("POST",
url.format(pro=pro, group_id=params.group_id),
headers=headers,
json=data)
with response as r:
text = ""
for e in r.iter_text():
if not e.startswith("data: "):
data = {
"error_code": 500,
"text": f"minimax返回错误的结果{e}",
"error": {
"message": f"minimax返回错误的结果{e}",
"type": "invalid_request_error",
"param": None,
"code": None,
}
}
self.logger.error(f"请求 MiniMax API 时发生错误:{data}")
yield data
continue
data = json.loads(e[6:])
if data.get("usage"):
break
if choices := data.get("choices"):
if chunk := choices[0].get("delta", ""):
text += chunk
yield {"error_code": 0, "text": text}
def do_embeddings(self, params: ApiEmbeddingsParams) -> Dict:
params.load_config(self.model_names[0])
url = f"https://api.minimax.chat/v1/embeddings?GroupId={params.group_id}"
headers = {
"Authorization": f"Bearer {params.api_key}",
"Content-Type": "application/json",
}
data = {
"model": params.embed_model or self.DEFAULT_EMBED_MODEL,
"texts": [],
"type": "query" if params.to_query else "db",
}
if log_verbose:
logger.info(f'{self.__class__.__name__}:data: {data}')
logger.info(f'{self.__class__.__name__}:url: {url}')
logger.info(f'{self.__class__.__name__}:headers: {headers}')
with get_httpx_client() as client:
result = []
i = 0
batch_size = 10
while i < len(params.texts):
texts = params.texts[i:i+batch_size]
data["texts"] = texts
r = client.post(url, headers=headers, json=data).json()
if embeddings := r.get("vectors"):
result += embeddings
elif error := r.get("base_resp"):
data = {
"code": error["status_code"],
"msg": error["status_msg"],
"error": {
"message": error["status_msg"],
"type": "invalid_request_error",
"param": None,
"code": None,
}
}
self.logger.error(f"请求 MiniMax API 时发生错误:{data}")
return data
i += batch_size
return {"code": 200, "data": result}
def get_embeddings(self, params):
print("embedding")
print(params)
def make_conv_template(self, conv_template: str = None, model_path: str = None) -> Conversation:
return conv.Conversation(
name=self.model_names[0],
system_message="你是MiniMax自主研发的大型语言模型回答问题简洁有条理。",
messages=[],
roles=["USER", "BOT"],
sep="\n### ",
stop_str="###",
)
if __name__ == "__main__":
import uvicorn
from server.utils import MakeFastAPIOffline
from fastchat.serve.model_worker import app
worker = MiniMaxWorker(
controller_addr="http://127.0.0.1:20001",
worker_addr="http://127.0.0.1:21002",
)
sys.modules["fastchat.serve.model_worker"].worker = worker
MakeFastAPIOffline(app)
uvicorn.run(app, port=21002)