mirror of
https://github.com/RYDE-WORK/Langchain-Chatchat.git
synced 2026-01-25 16:23:22 +08:00
287 lines
10 KiB
Python
287 lines
10 KiB
Python
from typing import IO, Generator, List, Optional, Union, cast
|
|
|
|
from model_providers.core.entities.provider_configuration import ProviderModelBundle
|
|
from model_providers.core.model_runtime.callbacks.base_callback import Callback
|
|
from model_providers.core.model_runtime.entities.llm_entities import LLMResult
|
|
from model_providers.core.model_runtime.entities.message_entities import (
|
|
PromptMessage,
|
|
PromptMessageTool,
|
|
)
|
|
from model_providers.core.model_runtime.entities.model_entities import ModelType
|
|
from model_providers.core.model_runtime.entities.rerank_entities import RerankResult
|
|
from model_providers.core.model_runtime.entities.text_embedding_entities import (
|
|
TextEmbeddingResult,
|
|
)
|
|
from model_providers.core.model_runtime.model_providers.__base.large_language_model import (
|
|
LargeLanguageModel,
|
|
)
|
|
from model_providers.core.model_runtime.model_providers.__base.moderation_model import (
|
|
ModerationModel,
|
|
)
|
|
from model_providers.core.model_runtime.model_providers.__base.rerank_model import (
|
|
RerankModel,
|
|
)
|
|
from model_providers.core.model_runtime.model_providers.__base.speech2text_model import (
|
|
Speech2TextModel,
|
|
)
|
|
from model_providers.core.model_runtime.model_providers.__base.text_embedding_model import (
|
|
TextEmbeddingModel,
|
|
)
|
|
from model_providers.core.model_runtime.model_providers.__base.tts_model import TTSModel
|
|
from model_providers.core.provider_manager import ProviderManager
|
|
from model_providers.errors.error import ProviderTokenNotInitError
|
|
|
|
|
|
def _fetch_credentials_from_bundle(
|
|
provider_model_bundle: ProviderModelBundle, model: str
|
|
) -> dict:
|
|
"""
|
|
Fetch credentials from provider model bundle
|
|
:param provider_model_bundle: provider model bundle
|
|
:param model: model name
|
|
:return:
|
|
"""
|
|
credentials = provider_model_bundle.configuration.get_current_credentials(
|
|
model_type=provider_model_bundle.model_type_instance.model_type, model=model
|
|
)
|
|
|
|
if credentials is None:
|
|
raise ProviderTokenNotInitError(
|
|
f"Model {model} credentials is not initialized."
|
|
)
|
|
|
|
return credentials
|
|
|
|
|
|
class ModelInstance:
|
|
"""
|
|
Model instance class
|
|
"""
|
|
|
|
def __init__(self, provider_model_bundle: ProviderModelBundle, model: str) -> None:
|
|
self._provider_model_bundle = provider_model_bundle
|
|
self.model = model
|
|
self.provider = provider_model_bundle.configuration.provider.provider
|
|
self.credentials = _fetch_credentials_from_bundle(provider_model_bundle, model)
|
|
self.model_type_instance = self._provider_model_bundle.model_type_instance
|
|
|
|
def invoke_llm(
|
|
self,
|
|
prompt_messages: List[PromptMessage],
|
|
model_parameters: Optional[dict] = None,
|
|
tools: Optional[List[PromptMessageTool]] = None,
|
|
stop: Optional[List[str]] = None,
|
|
stream: bool = True,
|
|
user: Optional[str] = None,
|
|
callbacks: List[Callback] = None,
|
|
) -> Union[LLMResult, Generator]:
|
|
"""
|
|
Invoke large language model
|
|
|
|
:param prompt_messages: prompt messages
|
|
:param model_parameters: model parameters
|
|
:param tools: tools for tool calling
|
|
:param stop: stop words
|
|
:param stream: is stream response
|
|
:param user: unique user id
|
|
:param callbacks: callbacks
|
|
:return: full response or stream response chunk generator result
|
|
"""
|
|
if not isinstance(self.model_type_instance, LargeLanguageModel):
|
|
raise Exception("Model type instance is not LargeLanguageModel")
|
|
|
|
self.model_type_instance = cast(LargeLanguageModel, self.model_type_instance)
|
|
return self.model_type_instance.invoke(
|
|
model=self.model,
|
|
credentials=self.credentials,
|
|
prompt_messages=prompt_messages,
|
|
model_parameters=model_parameters,
|
|
tools=tools,
|
|
stop=stop,
|
|
stream=stream,
|
|
user=user,
|
|
callbacks=callbacks,
|
|
)
|
|
|
|
def invoke_text_embedding(
|
|
self, texts: List[str], user: Optional[str] = None
|
|
) -> TextEmbeddingResult:
|
|
"""
|
|
Invoke large language model
|
|
|
|
:param texts: texts to embed
|
|
:param user: unique user id
|
|
:return: embeddings result
|
|
"""
|
|
if not isinstance(self.model_type_instance, TextEmbeddingModel):
|
|
raise Exception("Model type instance is not TextEmbeddingModel")
|
|
|
|
self.model_type_instance = cast(TextEmbeddingModel, self.model_type_instance)
|
|
return self.model_type_instance.invoke(
|
|
model=self.model, credentials=self.credentials, texts=texts, user=user
|
|
)
|
|
|
|
def invoke_rerank(
|
|
self,
|
|
query: str,
|
|
docs: List[str],
|
|
score_threshold: Optional[float] = None,
|
|
top_n: Optional[int] = None,
|
|
user: Optional[str] = None,
|
|
) -> RerankResult:
|
|
"""
|
|
Invoke rerank model
|
|
|
|
:param query: search query
|
|
:param docs: docs for reranking
|
|
:param score_threshold: score threshold
|
|
:param top_n: top n
|
|
:param user: unique user id
|
|
:return: rerank result
|
|
"""
|
|
if not isinstance(self.model_type_instance, RerankModel):
|
|
raise Exception("Model type instance is not RerankModel")
|
|
|
|
self.model_type_instance = cast(RerankModel, self.model_type_instance)
|
|
return self.model_type_instance.invoke(
|
|
model=self.model,
|
|
credentials=self.credentials,
|
|
query=query,
|
|
docs=docs,
|
|
score_threshold=score_threshold,
|
|
top_n=top_n,
|
|
user=user,
|
|
)
|
|
|
|
def invoke_moderation(self, text: str, user: Optional[str] = None) -> bool:
|
|
"""
|
|
Invoke moderation model
|
|
|
|
:param text: text to moderate
|
|
:param user: unique user id
|
|
:return: false if text is safe, true otherwise
|
|
"""
|
|
if not isinstance(self.model_type_instance, ModerationModel):
|
|
raise Exception("Model type instance is not ModerationModel")
|
|
|
|
self.model_type_instance = cast(ModerationModel, self.model_type_instance)
|
|
return self.model_type_instance.invoke(
|
|
model=self.model, credentials=self.credentials, text=text, user=user
|
|
)
|
|
|
|
def invoke_speech2text(self, file: IO[bytes], user: Optional[str] = None) -> str:
|
|
"""
|
|
Invoke large language model
|
|
|
|
:param file: audio file
|
|
:param user: unique user id
|
|
:return: text for given audio file
|
|
"""
|
|
if not isinstance(self.model_type_instance, Speech2TextModel):
|
|
raise Exception("Model type instance is not Speech2TextModel")
|
|
|
|
self.model_type_instance = cast(Speech2TextModel, self.model_type_instance)
|
|
return self.model_type_instance.invoke(
|
|
model=self.model, credentials=self.credentials, file=file, user=user
|
|
)
|
|
|
|
def invoke_tts(
|
|
self,
|
|
content_text: str,
|
|
tenant_id: str,
|
|
voice: str,
|
|
streaming: bool,
|
|
user: Optional[str] = None,
|
|
) -> str:
|
|
"""
|
|
Invoke large language tts model
|
|
|
|
:param content_text: text content to be translated
|
|
:param tenant_id: user tenant id
|
|
:param user: unique user id
|
|
:param voice: model timbre
|
|
:param streaming: output is streaming
|
|
:return: text for given audio file
|
|
"""
|
|
if not isinstance(self.model_type_instance, TTSModel):
|
|
raise Exception("Model type instance is not TTSModel")
|
|
|
|
self.model_type_instance = cast(TTSModel, self.model_type_instance)
|
|
return self.model_type_instance.invoke(
|
|
model=self.model,
|
|
credentials=self.credentials,
|
|
content_text=content_text,
|
|
user=user,
|
|
tenant_id=tenant_id,
|
|
voice=voice,
|
|
streaming=streaming,
|
|
)
|
|
|
|
def get_tts_voices(self, language: str) -> list:
|
|
"""
|
|
Invoke large language tts model voices
|
|
|
|
:param language: tts language
|
|
:return: tts model voices
|
|
"""
|
|
if not isinstance(self.model_type_instance, TTSModel):
|
|
raise Exception("Model type instance is not TTSModel")
|
|
|
|
self.model_type_instance = cast(TTSModel, self.model_type_instance)
|
|
return self.model_type_instance.get_tts_model_voices(
|
|
model=self.model, credentials=self.credentials, language=language
|
|
)
|
|
|
|
|
|
class ModelManager:
|
|
def __init__(
|
|
self,
|
|
provider_name_to_provider_records_dict: dict,
|
|
provider_name_to_provider_model_records_dict: dict,
|
|
) -> None:
|
|
self._provider_manager = ProviderManager(
|
|
provider_name_to_provider_records_dict=provider_name_to_provider_records_dict,
|
|
provider_name_to_provider_model_records_dict=provider_name_to_provider_model_records_dict,
|
|
)
|
|
|
|
@property
|
|
def provider_manager(self) -> ProviderManager:
|
|
return self._provider_manager
|
|
|
|
def get_model_instance(
|
|
self, provider: str, model_type: ModelType, model: str
|
|
) -> ModelInstance:
|
|
"""
|
|
Get model instance
|
|
:param provider: provider name
|
|
:param model_type: model type
|
|
:param model: model name
|
|
:return:
|
|
"""
|
|
if not provider:
|
|
return self.get_default_model_instance(model_type)
|
|
provider_model_bundle = self._provider_manager.get_provider_model_bundle(
|
|
provider=provider, model_type=model_type
|
|
)
|
|
|
|
return ModelInstance(provider_model_bundle, model)
|
|
|
|
def get_default_model_instance(self, model_type: ModelType) -> ModelInstance:
|
|
"""
|
|
Get default model instance
|
|
:param model_type: model type
|
|
:return:
|
|
"""
|
|
default_model_entity = self._provider_manager.get_default_model(
|
|
model_type=model_type
|
|
)
|
|
|
|
if not default_model_entity:
|
|
raise ProviderTokenNotInitError(f"Default model not found for {model_type}")
|
|
|
|
return self.get_model_instance(
|
|
provider=default_model_entity.provider.provider,
|
|
model_type=model_type,
|
|
model=default_model_entity.model,
|
|
)
|