mirror of
https://github.com/RYDE-WORK/Langchain-Chatchat.git
synced 2026-01-19 21:37:20 +08:00
新功能:
- 支持在线 Embeddings:zhipu-api, qwen-api, minimax-api, qianfan-api
- API 增加 /other/embed_texts 接口
- init_database.py 增加 --embed-model 参数,可以指定使用的嵌入模型(本地或在线均可)
- 对于 FAISS 知识库,支持多向量库,默认位置:{KB_PATH}/vector_store/{embed_model}
- Lite 模式支持所有知识库相关功能。此模式下最主要的限制是:
- 不能使用本地 LLM 和 Embeddings 模型
- 知识库不支持 PDF 文件
- init_database.py 重建知识库时不再默认情况数据库表,增加 clear-tables 参数手动控制。
- API 和 WEBUI 中 score_threshold 参数范围改为 [0, 2],以更好的适应在线嵌入模型
问题修复:
- API 中 list_config_models 会删除 ONLINE_LLM_MODEL 中的敏感信息,导致第二轮API请求错误
开发者:
- 统一向量库的识别:以(kb_name,embed_model)为判断向量库唯一性的依据,避免 FAISS 知识库缓存加载逻辑错误
- KBServiceFactory.get_service_by_name 中添加 default_embed_model 参数,用于在构建新知识库时设置 embed_model
- 优化 kb_service 中 Embeddings 操作:
- 统一加载接口: server.utils.load_embeddings,利用全局缓存避免各处 Embeddings 传参
- 统一文本嵌入接口:server.knowledge_base.kb_service.base.[embed_texts, embed_documents]
- 重写 normalize 函数,去除对 scikit-learn/scipy 的依赖
138 lines
6.0 KiB
Python
138 lines
6.0 KiB
Python
from configs import (EMBEDDING_MODEL, DEFAULT_VS_TYPE, ZH_TITLE_ENHANCE,
|
|
CHUNK_SIZE, OVERLAP_SIZE,
|
|
logger, log_verbose)
|
|
from server.knowledge_base.utils import (get_file_path, list_kbs_from_folder,
|
|
list_files_from_folder,files2docs_in_thread,
|
|
KnowledgeFile,)
|
|
from server.knowledge_base.kb_service.base import KBServiceFactory
|
|
from server.db.repository.knowledge_file_repository import add_file_to_db
|
|
from server.db.base import Base, engine
|
|
import os
|
|
from typing import Literal, Any, List
|
|
|
|
|
|
def create_tables():
|
|
Base.metadata.create_all(bind=engine)
|
|
|
|
|
|
def reset_tables():
|
|
Base.metadata.drop_all(bind=engine)
|
|
create_tables()
|
|
|
|
|
|
def file_to_kbfile(kb_name: str, files: List[str]) -> List[KnowledgeFile]:
|
|
kb_files = []
|
|
for file in files:
|
|
try:
|
|
kb_file = KnowledgeFile(filename=file, knowledge_base_name=kb_name)
|
|
kb_files.append(kb_file)
|
|
except Exception as e:
|
|
msg = f"{e},已跳过"
|
|
logger.error(f'{e.__class__.__name__}: {msg}',
|
|
exc_info=e if log_verbose else None)
|
|
return kb_files
|
|
|
|
|
|
def folder2db(
|
|
kb_names: List[str],
|
|
mode: Literal["recreate_vs", "update_in_db", "increament"],
|
|
vs_type: Literal["faiss", "milvus", "pg", "chromadb"] = DEFAULT_VS_TYPE,
|
|
embed_model: str = EMBEDDING_MODEL,
|
|
chunk_size: int = CHUNK_SIZE,
|
|
chunk_overlap: int = OVERLAP_SIZE,
|
|
zh_title_enhance: bool = ZH_TITLE_ENHANCE,
|
|
):
|
|
'''
|
|
use existed files in local folder to populate database and/or vector store.
|
|
set parameter `mode` to:
|
|
recreate_vs: recreate all vector store and fill info to database using existed files in local folder
|
|
fill_info_only(disabled): do not create vector store, fill info to db using existed files only
|
|
update_in_db: update vector store and database info using local files that existed in database only
|
|
increament: create vector store and database info for local files that not existed in database only
|
|
'''
|
|
def files2vs(kb_name: str, kb_files: List[KnowledgeFile]):
|
|
for success, result in files2docs_in_thread(kb_files,
|
|
chunk_size=chunk_size,
|
|
chunk_overlap=chunk_overlap,
|
|
zh_title_enhance=zh_title_enhance):
|
|
if success:
|
|
_, filename, docs = result
|
|
print(f"正在将 {kb_name}/{filename} 添加到向量库,共包含{len(docs)}条文档")
|
|
kb_file = KnowledgeFile(filename=filename, knowledge_base_name=kb_name)
|
|
kb_file.splited_docs = docs
|
|
kb.add_doc(kb_file=kb_file, not_refresh_vs_cache=True)
|
|
else:
|
|
print(result)
|
|
|
|
kb_names = kb_names or list_kbs_from_folder()
|
|
for kb_name in kb_names:
|
|
kb = KBServiceFactory.get_service(kb_name, vs_type, embed_model)
|
|
if not kb.exists():
|
|
kb.create_kb()
|
|
|
|
# 清除向量库,从本地文件重建
|
|
if mode == "recreate_vs":
|
|
kb.clear_vs()
|
|
kb.create_kb()
|
|
kb_files = file_to_kbfile(kb_name, list_files_from_folder(kb_name))
|
|
files2vs(kb_name, kb_files)
|
|
kb.save_vector_store()
|
|
# # 不做文件内容的向量化,仅将文件元信息存到数据库
|
|
# # 由于现在数据库存了很多与文本切分相关的信息,单纯存储文件信息意义不大,该功能取消。
|
|
# elif mode == "fill_info_only":
|
|
# files = list_files_from_folder(kb_name)
|
|
# kb_files = file_to_kbfile(kb_name, files)
|
|
# for kb_file in kb_files:
|
|
# add_file_to_db(kb_file)
|
|
# print(f"已将 {kb_name}/{kb_file.filename} 添加到数据库")
|
|
# 以数据库中文件列表为基准,利用本地文件更新向量库
|
|
elif mode == "update_in_db":
|
|
files = kb.list_files()
|
|
kb_files = file_to_kbfile(kb_name, files)
|
|
files2vs(kb_name, kb_files)
|
|
kb.save_vector_store()
|
|
# 对比本地目录与数据库中的文件列表,进行增量向量化
|
|
elif mode == "increament":
|
|
db_files = kb.list_files()
|
|
folder_files = list_files_from_folder(kb_name)
|
|
files = list(set(folder_files) - set(db_files))
|
|
kb_files = file_to_kbfile(kb_name, files)
|
|
files2vs(kb_name, kb_files)
|
|
kb.save_vector_store()
|
|
else:
|
|
print(f"unspported migrate mode: {mode}")
|
|
|
|
|
|
def prune_db_docs(kb_names: List[str]):
|
|
'''
|
|
delete docs in database that not existed in local folder.
|
|
it is used to delete database docs after user deleted some doc files in file browser
|
|
'''
|
|
for kb_name in kb_names:
|
|
kb = KBServiceFactory.get_service_by_name(kb_name)
|
|
if kb and kb.exists():
|
|
files_in_db = kb.list_files()
|
|
files_in_folder = list_files_from_folder(kb_name)
|
|
files = list(set(files_in_db) - set(files_in_folder))
|
|
kb_files = file_to_kbfile(kb_name, files)
|
|
for kb_file in kb_files:
|
|
kb.delete_doc(kb_file, not_refresh_vs_cache=True)
|
|
print(f"success to delete docs for file: {kb_name}/{kb_file.filename}")
|
|
kb.save_vector_store()
|
|
|
|
|
|
def prune_folder_files(kb_names: List[str]):
|
|
'''
|
|
delete doc files in local folder that not existed in database.
|
|
is is used to free local disk space by delete unused doc files.
|
|
'''
|
|
for kb_name in kb_names:
|
|
kb = KBServiceFactory.get_service_by_name(kb_name)
|
|
if kb and kb.exists():
|
|
files_in_db = kb.list_files()
|
|
files_in_folder = list_files_from_folder(kb_name)
|
|
files = list(set(files_in_folder) - set(files_in_db))
|
|
for file in files:
|
|
os.remove(get_file_path(kb_name, file))
|
|
print(f"success to delete file: {kb_name}/{file}")
|