Langchain-Chatchat/test/textsplitter/test_zh_title_enhance.py
kiddog99 25b46a7b9e
标题增强 (#631)
* Add files via upload

* Update local_doc_qa.py

* Update model_config.py

* Update zh_title_enhance.py

* Add files via upload

* Update README.md

* fix bugs in MyFAISS.delete_doc

* fix:前端知识库获取失败.

* update zh_title_enhance.py

* update zh_title_enhance.py

* Update zh_title_enhance.py

* add test/textsplitter

* add test_zh_title_enhance.py

---------

Co-authored-by: imClumsyPanda <littlepanda0716@gmail.com>
Co-authored-by: JZF <jiangzhifeng_jzf@163.com>
Co-authored-by: fxjhello <127916299+fxjhello@users.noreply.github.com>
2023-06-18 21:45:06 +08:00

22 lines
871 B
Python

from configs.model_config import *
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
import nltk
from vectorstores import MyFAISS
from chains.local_doc_qa import load_file
nltk.data.path = [NLTK_DATA_PATH] + nltk.data.path
if __name__ == "__main__":
filepath = os.path.join(os.path.dirname(os.path.dirname(os.path.dirname(__file__))),
"knowledge_base", "samples", "content", "test.txt")
embeddings = HuggingFaceEmbeddings(model_name=embedding_model_dict[EMBEDDING_MODEL],
model_kwargs={'device': EMBEDDING_DEVICE})
docs = load_file(filepath, using_zh_title_enhance=True)
vector_store = MyFAISS.from_documents(docs, embeddings)
query = "指令提示技术有什么示例"
search_result = vector_store.similarity_search(query)
print(search_result)
pass