Langchain-Chatchat/knowledge_based_chatglm.py
liang tongtong 57c3cac3bb Webui更新说明
1、自动读取knowledge_based_chatglm.py中LLM及embedding模型枚举,选择后点击setting进行模型加载,可随时切换模型进行测试
2、可手动调节保留对话历史长度,可根据显存大小自行调节
3、添加上传文件功能,通过下拉框选择已上传的文件,点击loading加载文件,过程中可随时更换加载的文件
4、底部添加use via API可对接到自己系统

TODO:
1、添加模型加载进度条
2、添加输出内容及错误提示
3、国家化语言切换
4、引用标注
5、添加插件系统(可基础lora训练等)
2023-04-11 04:30:36 +00:00

97 lines
3.1 KiB
Python

from langchain.chains import RetrievalQA
from langchain.prompts.chat import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
HumanMessagePromptTemplate,
)
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.document_loaders import UnstructuredFileLoader
from chatglm_llm import ChatGLM
# Global Parameters
EMBEDDING_MODEL = "text2vec"
VECTOR_SEARCH_TOP_K = 6
LLM_MODEL = "chatglm-6b"
LLM_HISTORY_LEN = 3
# Show reply with source text from input document
REPLY_WITH_SOURCE = True
embedding_model_dict = {
"ernie-tiny": "nghuyong/ernie-3.0-nano-zh",
"ernie-base": "nghuyong/ernie-3.0-base-zh",
"text2vec": "GanymedeNil/text2vec-large-chinese",
}
llm_model_dict = {
"chatglm-6b": "THUDM/chatglm-6b",
"chatglm-6b-int4": "THUDM/chatglm-6b-int4",
# "chatglm-6b-int4-qe": "THUDM/chatglm-6b-int4-qe",
}
chatglm = None
embeddings = None
def init_cfg(LLM_MODEL,EMBEDDING_MODEL, LLM_HISTORY_LEN,V_SEARCH_TOP_K=6):
global chatglm,embeddings,VECTOR_SEARCH_TOP_K
VECTOR_SEARCH_TOP_K=V_SEARCH_TOP_K
chatglm = ChatGLM()
chatglm.load_model(model_name_or_path=llm_model_dict[LLM_MODEL])
chatglm.history_len = LLM_HISTORY_LEN
embeddings = HuggingFaceEmbeddings(model_name=embedding_model_dict[EMBEDDING_MODEL], )
def init_knowledge_vector_store(filepath):
loader = UnstructuredFileLoader(filepath, mode="elements")
docs = loader.load()
vector_store = FAISS.from_documents(docs, embeddings)
return vector_store
def get_knowledge_based_answer(query, vector_store, chat_history=[]):
global chatglm,embeddings
system_template = """基于以下内容,简洁和专业的来回答用户的问题。
如果无法从中得到答案,请说 "不知道""没有足够的相关信息",不要试图编造答案。答案请使用中文。
----------------
{context}
----------------
"""
messages = [
SystemMessagePromptTemplate.from_template(system_template),
HumanMessagePromptTemplate.from_template("{question}"),
]
prompt = ChatPromptTemplate.from_messages(messages)
chatglm.history = chat_history
knowledge_chain = RetrievalQA.from_llm(
llm=chatglm,
retriever=vector_store.as_retriever(search_kwargs={"k": VECTOR_SEARCH_TOP_K}),
prompt=prompt
)
knowledge_chain.return_source_documents = True
result = knowledge_chain({"query": query})
chatglm.history[-1][0] = query
return result, chatglm.history
if __name__ == "__main__":
init_cfg(LLM_MODEL,EMBEDDING_MODEL, LLM_HISTORY_LEN)
filepath = input("Input your local knowledge file path 请输入本地知识文件路径:")
vector_store = init_knowledge_vector_store(filepath)
history = []
while True:
query = input("Input your question 请输入问题:")
resp, history = get_knowledge_based_answer(query=query,
vector_store=vector_store,
chat_history=history)
if REPLY_WITH_SOURCE:
print(resp)
else:
print(resp["result"])