2024-03-22 20:39:25 +08:00

84 lines
2.6 KiB
Python

import base64
import json
import os
from PIL import Image
from typing import List
import uuid
from langchain.agents import tool
from server.pydantic_v1 import Field, FieldInfo
import openai
from configs.basic_config import MEDIA_PATH
from server.utils import MsgType
def get_image_model_config() -> dict:
from configs.model_config import LLM_MODEL_CONFIG, ONLINE_LLM_MODEL
model = LLM_MODEL_CONFIG.get("image_model")
if model:
name = list(model.keys())[0]
if config := ONLINE_LLM_MODEL.get(name):
config = {**list(model.values())[0], **config}
config.setdefault("model_name", name)
return config
@tool(return_direct=True)
def text2images(
prompt: str,
n: int = Field(1, description="需生成图片的数量"),
width: int = Field(512, description="生成图片的宽度"),
height: int = Field(512, description="生成图片的高度"),
) -> List[str]:
'''根据用户的描述生成图片'''
# workaround before langchain uprading
if isinstance(n, FieldInfo):
n = n.default
if isinstance(width, FieldInfo):
width = width.default
if isinstance(height, FieldInfo):
height = height.default
model_config = get_image_model_config()
assert model_config is not None, "请正确配置文生图模型"
client = openai.Client(
base_url=model_config["api_base_url"],
api_key=model_config["api_key"],
timeout=600,
)
resp = client.images.generate(prompt=prompt,
n=n,
size=f"{width}*{height}",
response_format="b64_json",
model=model_config["model_name"],
)
images = []
for x in resp.data:
uid = uuid.uuid4().hex
filename = f"image/{uid}.png"
with open(os.path.join(MEDIA_PATH, filename), "wb") as fp:
fp.write(base64.b64decode(x.b64_json))
images.append(filename)
return json.dumps({"message_type": MsgType.IMAGE, "images": images})
if __name__ == "__main__":
from io import BytesIO
from matplotlib import pyplot as plt
from pathlib import Path
import sys
sys.path.append(str(Path(__file__).parent.parent.parent.parent))
prompt = "draw a house with trees and river"
prompt = "画一个带树、草、河流的山中小屋"
params = text2images.args_schema.parse_obj({"prompt": prompt}).dict()
print(params)
image = text2images.invoke(params)[0]
buffer = BytesIO(base64.b64decode(image))
image = Image.open(buffer)
plt.imshow(image)
plt.show()