Langchain-Chatchat/tests/test_qwen_agent.py
2024-03-06 13:42:01 +08:00

141 lines
4.5 KiB
Python

import sys
from pathlib import Path
sys.path.append(str(Path(__file__).parent.parent))
import asyncio
import json
from pprint import pprint
from langchain.agents import AgentExecutor
from langchain_openai.chat_models import ChatOpenAI
# from langchain.chat_models.openai import ChatOpenAI
from server.agent.tools_factory.tools_registry import all_tools
from server.agent.agent_factory.qwen_agent import create_structured_qwen_chat_agent
from server.callback_handler.agent_callback_handler import AgentExecutorAsyncIteratorCallbackHandler
from langchain import globals
# globals.set_debug(True)
# globals.set_verbose(True)
async def test1():
callback = AgentExecutorAsyncIteratorCallbackHandler()
tools = [t.copy(update={"callbacks": [callback]}) for t in all_tools]
# qwen_model = get_ChatOpenAI("Qwen-1_8B-Chat", 0.01, streaming=True, callbacks=[callback])
qwen_model = ChatOpenAI(base_url="http://127.0.0.1:9997/v1",
api_key="empty",
streaming=False,
temperature=0.01,
model="qwen",
callbacks=[callback],
)
agent = create_structured_qwen_chat_agent(tools=tools, llm=qwen_model)
executor = AgentExecutor(agent=agent, tools=tools, verbose=True, callbacks=[callback])
# ret = executor.invoke("苏州今天冷吗")
ret = asyncio.create_task(executor.ainvoke({"input": "苏州今天冷吗"}))
async for chunk in callback.aiter():
print(chunk)
# ret = executor.invoke("从知识库samples中查询chatchat项目简介")
# ret = executor.invoke("chatchat项目主要issue有哪些")
await ret
async def test_server_chat():
from server.chat.chat import chat
mc={'preprocess_model': {
'qwen': {
'temperature': 0.4,
'max_tokens': 2048,
'history_len': 100,
'prompt_name': 'default',
'callbacks': False}
},
'llm_model': {
'qwen': {
'temperature': 0.9,
'max_tokens': 4096,
'history_len': 3,
'prompt_name': 'default',
'callbacks': True}
},
'action_model': {
'qwen': {
'temperature': 0.01,
'max_tokens': 4096,
'prompt_name': 'qwen',
'callbacks': True}
},
'postprocess_model': {
'qwen': {
'temperature': 0.01,
'max_tokens': 4096,
'prompt_name': 'default',
'callbacks': True}
}
}
tc={'weather_check': {'use': False, 'api-key': 'your key'}}
async for x in (await chat("苏州天气如何",{},
model_config=mc,
tool_config=tc,
conversation_id=None,
history_len=-1,
history=[],
stream=True)).body_iterator:
pprint(x)
async def test_text2image():
from server.chat.chat import chat
mc={'preprocess_model': {
'qwen-api': {
'temperature': 0.4,
'max_tokens': 2048,
'history_len': 100,
'prompt_name': 'default',
'callbacks': False}
},
'llm_model': {
'qwen-api': {
'temperature': 0.9,
'max_tokens': 4096,
'history_len': 3,
'prompt_name': 'default',
'callbacks': True}
},
'action_model': {
'qwen-api': {
'temperature': 0.01,
'max_tokens': 4096,
'prompt_name': 'qwen',
'callbacks': True}
},
'postprocess_model': {
'qwen-api': {
'temperature': 0.01,
'max_tokens': 4096,
'prompt_name': 'default',
'callbacks': True}
},
'image_model': {
'sd-turbo': {}
}
}
tc={'text2images': {'use': True}}
async for x in (await chat("draw a house",{},
model_config=mc,
tool_config=tc,
conversation_id=None,
history_len=-1,
history=[],
stream=False)).body_iterator:
x = json.loads(x)
pprint(x)
asyncio.run(test_text2image())