mirror of
https://github.com/RYDE-WORK/Langchain-Chatchat.git
synced 2026-01-19 13:23:16 +08:00
160 lines
5.2 KiB
Python
160 lines
5.2 KiB
Python
from contextlib import contextmanager
|
||
|
||
import httpx
|
||
import requests
|
||
from fastchat.conversation import Conversation
|
||
from httpx_sse import EventSource
|
||
|
||
from server.model_workers.base import *
|
||
from fastchat import conversation as conv
|
||
import sys
|
||
from typing import List, Dict, Iterator, Literal, Any
|
||
import jwt
|
||
import time
|
||
import json
|
||
|
||
@contextmanager
|
||
def connect_sse(client: httpx.Client, method: str, url: str, **kwargs: Any):
|
||
with client.stream(method, url, **kwargs) as response:
|
||
yield EventSource(response)
|
||
|
||
|
||
def generate_token(apikey: str, exp_seconds: int):
|
||
try:
|
||
id, secret = apikey.split(".")
|
||
except Exception as e:
|
||
raise Exception("invalid apikey", e)
|
||
|
||
payload = {
|
||
"api_key": id,
|
||
"exp": int(round(time.time() * 1000)) + exp_seconds * 1000,
|
||
"timestamp": int(round(time.time() * 1000)),
|
||
}
|
||
|
||
return jwt.encode(
|
||
payload,
|
||
secret,
|
||
algorithm="HS256",
|
||
headers={"alg": "HS256", "sign_type": "SIGN"},
|
||
)
|
||
|
||
|
||
class ChatGLMWorker(ApiModelWorker):
|
||
DEFAULT_EMBED_MODEL = "embedding-2"
|
||
|
||
def __init__(
|
||
self,
|
||
*,
|
||
model_names: List[str] = ("zhipu-api",),
|
||
controller_addr: str = None,
|
||
worker_addr: str = None,
|
||
version: Literal["glm-4"] = "glm-4",
|
||
**kwargs,
|
||
):
|
||
kwargs.update(model_names=model_names, controller_addr=controller_addr, worker_addr=worker_addr)
|
||
kwargs.setdefault("context_len", 4096)
|
||
super().__init__(**kwargs)
|
||
self.version = version
|
||
|
||
def do_chat(self, params: ApiChatParams) -> Iterator[Dict]:
|
||
params.load_config(self.model_names[0])
|
||
token = generate_token(params.api_key, 60)
|
||
headers = {
|
||
"Content-Type": "application/json",
|
||
"Authorization": f"Bearer {token}"
|
||
}
|
||
data = {
|
||
"model": params.version,
|
||
"messages": params.messages,
|
||
"max_tokens": params.max_tokens,
|
||
"temperature": params.temperature,
|
||
"stream": True
|
||
}
|
||
|
||
url = "https://open.bigmodel.cn/api/paas/v4/chat/completions"
|
||
text = ""
|
||
response = requests.post(url, headers=headers, json=data, stream=True)
|
||
for chunk in response.iter_lines():
|
||
if chunk:
|
||
if chunk.startswith(b'data:'):
|
||
json_str = chunk.decode('utf-8')[6:]
|
||
try:
|
||
data = json.loads(json_str)
|
||
if 'finish_reason' in data and data.get('finish_reason') =="stop":
|
||
break
|
||
else:
|
||
msg = data['choices'][0]['delta']['content']
|
||
text += msg
|
||
yield {"error_code": 0, "text": text}
|
||
except json.JSONDecodeError as e:
|
||
pass
|
||
|
||
|
||
def do_embeddings(self, params: ApiEmbeddingsParams) -> Dict:
|
||
embed_model = params.embed_model or self.DEFAULT_EMBED_MODEL
|
||
|
||
params.load_config(self.model_names[0])
|
||
i = 0
|
||
batch_size = 1
|
||
result = []
|
||
while i < len(params.texts):
|
||
token = generate_token(params.api_key, 60)
|
||
headers = {
|
||
"Content-Type": "application/json",
|
||
"Authorization": f"Bearer {token}"
|
||
}
|
||
data = {
|
||
"model": embed_model,
|
||
"input": "".join(params.texts[i: i + batch_size])
|
||
}
|
||
embedding_data = self.request_embedding_api(headers, data, 1)
|
||
if embedding_data:
|
||
result.append(embedding_data)
|
||
i += batch_size
|
||
print(f"请求{embed_model}接口处理第{i}块文本,返回embeddings: \n{embedding_data}")
|
||
|
||
return {"code": 200, "data": result}
|
||
|
||
# 请求接口,支持重试
|
||
def request_embedding_api(self, headers, data, retry=0):
|
||
response = ''
|
||
try:
|
||
url = "https://open.bigmodel.cn/api/paas/v4/embeddings"
|
||
response = requests.post(url, headers=headers, json=data)
|
||
ans = response.json()
|
||
return ans["data"][0]["embedding"]
|
||
except Exception as e:
|
||
print(f"request_embedding_api error={e} \nresponse={response}")
|
||
if retry > 0:
|
||
return self.request_embedding_api(headers, data, retry - 1)
|
||
else:
|
||
return None
|
||
|
||
def get_embeddings(self, params):
|
||
print("embedding")
|
||
print(params)
|
||
|
||
def make_conv_template(self, conv_template: str = None, model_path: str = None) -> Conversation:
|
||
return conv.Conversation(
|
||
name=self.model_names[0],
|
||
system_message="你是智谱AI小助手,请根据用户的提示来完成任务",
|
||
messages=[],
|
||
roles=["user", "assistant", "system"],
|
||
sep="\n###",
|
||
stop_str="###",
|
||
)
|
||
|
||
|
||
if __name__ == "__main__":
|
||
import uvicorn
|
||
from server.utils import MakeFastAPIOffline
|
||
from fastchat.serve.model_worker import app
|
||
|
||
worker = ChatGLMWorker(
|
||
controller_addr="http://127.0.0.1:20001",
|
||
worker_addr="http://127.0.0.1:21001",
|
||
)
|
||
sys.modules["fastchat.serve.model_worker"].worker = worker
|
||
MakeFastAPIOffline(app)
|
||
uvicorn.run(app, port=21001)
|