mirror of
https://github.com/RYDE-WORK/Langchain-Chatchat.git
synced 2026-01-29 02:03:37 +08:00
467 lines
15 KiB
Python
467 lines
15 KiB
Python
import asyncio
|
|
import json
|
|
import logging
|
|
import multiprocessing as mp
|
|
import os
|
|
import pprint
|
|
import threading
|
|
from typing import (
|
|
Any,
|
|
AsyncGenerator,
|
|
Dict,
|
|
Generator,
|
|
List,
|
|
Optional,
|
|
Tuple,
|
|
Type,
|
|
Union,
|
|
cast,
|
|
)
|
|
|
|
from fastapi import APIRouter, FastAPI, HTTPException, Request, Response, status
|
|
from fastapi.middleware.cors import CORSMiddleware
|
|
from sse_starlette import EventSourceResponse
|
|
from uvicorn import Config, Server
|
|
|
|
from model_providers.bootstrap_web.common import create_stream_chunk
|
|
from model_providers.core.bootstrap import OpenAIBootstrapBaseWeb
|
|
from model_providers.core.bootstrap.openai_protocol import (
|
|
ChatCompletionMessage,
|
|
ChatCompletionRequest,
|
|
ChatCompletionResponse,
|
|
ChatCompletionResponseChoice,
|
|
ChatCompletionStreamResponse,
|
|
ChatMessage,
|
|
EmbeddingsRequest,
|
|
EmbeddingsResponse,
|
|
Finish,
|
|
FunctionAvailable,
|
|
ModelCard,
|
|
ModelList,
|
|
Role,
|
|
UsageInfo,
|
|
)
|
|
from model_providers.core.model_runtime.entities.llm_entities import (
|
|
LLMResult,
|
|
LLMResultChunk,
|
|
)
|
|
from model_providers.core.model_runtime.entities.message_entities import (
|
|
AssistantPromptMessage,
|
|
ImagePromptMessageContent,
|
|
PromptMessage,
|
|
PromptMessageContent,
|
|
PromptMessageContentType,
|
|
PromptMessageTool,
|
|
SystemPromptMessage,
|
|
TextPromptMessageContent,
|
|
ToolPromptMessage,
|
|
UserPromptMessage,
|
|
)
|
|
from model_providers.core.model_runtime.entities.model_entities import (
|
|
AIModelEntity,
|
|
ModelType,
|
|
)
|
|
from model_providers.core.model_runtime.errors.invoke import InvokeError
|
|
from model_providers.core.utils.generic import dictify, jsonify
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
MessageLike = Union[ChatMessage, PromptMessage]
|
|
|
|
MessageLikeRepresentation = Union[
|
|
MessageLike,
|
|
Tuple[Union[str, Type], Union[str, List[dict], List[object]]],
|
|
str,
|
|
]
|
|
|
|
|
|
def _convert_prompt_message_to_dict(message: PromptMessage) -> dict:
|
|
"""
|
|
Convert PromptMessage to dict for OpenAI Compatibility API
|
|
"""
|
|
if isinstance(message, UserPromptMessage):
|
|
message = cast(UserPromptMessage, message)
|
|
if isinstance(message.content, str):
|
|
message_dict = {"role": "user", "content": message.content}
|
|
else:
|
|
raise ValueError("User message content must be str")
|
|
elif isinstance(message, AssistantPromptMessage):
|
|
message = cast(AssistantPromptMessage, message)
|
|
message_dict = {"role": "assistant", "content": message.content}
|
|
if message.tool_calls and len(message.tool_calls) > 0:
|
|
message_dict["function_call"] = {
|
|
"name": message.tool_calls[0].function.name,
|
|
"arguments": message.tool_calls[0].function.arguments,
|
|
}
|
|
elif isinstance(message, SystemPromptMessage):
|
|
message = cast(SystemPromptMessage, message)
|
|
message_dict = {"role": "system", "content": message.content}
|
|
elif isinstance(message, ToolPromptMessage):
|
|
# check if last message is user message
|
|
message = cast(ToolPromptMessage, message)
|
|
message_dict = {"role": "function", "content": message.content}
|
|
else:
|
|
raise ValueError(f"Unknown message type {type(message)}")
|
|
|
|
return message_dict
|
|
|
|
|
|
def _create_template_from_message_type(
|
|
message_type: str, template: Union[str, list]
|
|
) -> PromptMessage:
|
|
"""Create a message prompt template from a message type and template string.
|
|
|
|
Args:
|
|
message_type: str the type of the message template (e.g., "human", "ai", etc.)
|
|
template: str the template string.
|
|
|
|
Returns:
|
|
a message prompt template of the appropriate type.
|
|
"""
|
|
if isinstance(template, str):
|
|
content = template
|
|
elif isinstance(template, list):
|
|
content = []
|
|
for tmpl in template:
|
|
if isinstance(tmpl, str) or isinstance(tmpl, dict) and "text" in tmpl:
|
|
if isinstance(tmpl, str):
|
|
text: str = tmpl
|
|
else:
|
|
text = cast(dict, tmpl)["text"] # type: ignore[assignment] # noqa: E501
|
|
content.append(TextPromptMessageContent(data=text))
|
|
elif isinstance(tmpl, dict) and "image_url" in tmpl:
|
|
img_template = cast(dict, tmpl)["image_url"]
|
|
if isinstance(img_template, str):
|
|
img_template_obj = ImagePromptMessageContent(data=img_template)
|
|
elif isinstance(img_template, dict):
|
|
img_template = dict(img_template)
|
|
if "url" in img_template:
|
|
url = img_template["url"]
|
|
else:
|
|
url = None
|
|
img_template_obj = ImagePromptMessageContent(data=url)
|
|
else:
|
|
raise ValueError()
|
|
content.append(img_template_obj)
|
|
else:
|
|
raise ValueError()
|
|
else:
|
|
raise ValueError()
|
|
|
|
if message_type in ("human", "user"):
|
|
_message = UserPromptMessage(content=content)
|
|
elif message_type in ("ai", "assistant"):
|
|
_message = AssistantPromptMessage(content=content)
|
|
elif message_type == "system":
|
|
_message = SystemPromptMessage(content=content)
|
|
elif message_type in ("function", "tool"):
|
|
_message = ToolPromptMessage(content=content)
|
|
else:
|
|
raise ValueError(
|
|
f"Unexpected message type: {message_type}. Use one of 'human',"
|
|
f" 'user', 'ai', 'assistant', or 'system' and 'function' or 'tool'."
|
|
)
|
|
|
|
return _message
|
|
|
|
|
|
def _convert_to_message(
|
|
message: MessageLikeRepresentation,
|
|
) -> Union[PromptMessage]:
|
|
"""Instantiate a message from a variety of message formats.
|
|
|
|
The message format can be one of the following:
|
|
|
|
- BaseMessagePromptTemplate
|
|
- BaseMessage
|
|
- 2-tuple of (role string, template); e.g., ("human", "{user_input}")
|
|
- 2-tuple of (message class, template)
|
|
- string: shorthand for ("human", template); e.g., "{user_input}"
|
|
|
|
Args:
|
|
message: a representation of a message in one of the supported formats
|
|
|
|
Returns:
|
|
an instance of a message or a message template
|
|
"""
|
|
if isinstance(message, ChatMessage):
|
|
_message = _create_template_from_message_type(
|
|
message.role.to_origin_role(), message.content
|
|
)
|
|
|
|
elif isinstance(message, PromptMessage):
|
|
_message = message
|
|
elif isinstance(message, str):
|
|
_message = _create_template_from_message_type("human", message)
|
|
elif isinstance(message, tuple):
|
|
if len(message) != 2:
|
|
raise ValueError(f"Expected 2-tuple of (role, template), got {message}")
|
|
message_type_str, template = message
|
|
if isinstance(message_type_str, str):
|
|
_message = _create_template_from_message_type(message_type_str, template)
|
|
else:
|
|
raise ValueError(f"Expected message type string, got {message_type_str}")
|
|
else:
|
|
raise NotImplementedError(f"Unsupported message type: {type(message)}")
|
|
|
|
return _message
|
|
|
|
|
|
async def _stream_openai_chat_completion(
|
|
response: Generator,
|
|
) -> AsyncGenerator[str, None]:
|
|
request_id, model = None, None
|
|
for chunk in response:
|
|
if not isinstance(chunk, LLMResultChunk):
|
|
yield "[ERROR]"
|
|
return
|
|
|
|
if model is None:
|
|
model = chunk.model
|
|
if request_id is None:
|
|
request_id = "request_id"
|
|
yield create_stream_chunk(
|
|
request_id,
|
|
model,
|
|
ChatCompletionMessage(role=Role.ASSISTANT, content=""),
|
|
)
|
|
|
|
new_token = chunk.delta.message.content
|
|
|
|
if new_token:
|
|
delta = ChatCompletionMessage(
|
|
role=Role.value_of(chunk.delta.message.role.to_origin_role()),
|
|
content=new_token,
|
|
tool_calls=chunk.delta.message.tool_calls,
|
|
)
|
|
yield create_stream_chunk(
|
|
request_id=request_id,
|
|
model=model,
|
|
delta=delta,
|
|
index=chunk.delta.index,
|
|
finish_reason=chunk.delta.finish_reason,
|
|
)
|
|
|
|
yield create_stream_chunk(
|
|
request_id, model, ChatCompletionMessage(), finish_reason=Finish.STOP
|
|
)
|
|
yield "[DONE]"
|
|
|
|
|
|
async def _openai_chat_completion(response: LLMResult) -> ChatCompletionResponse:
|
|
choice = ChatCompletionResponseChoice(
|
|
index=0,
|
|
message=ChatCompletionMessage(
|
|
**_convert_prompt_message_to_dict(message=response.message)
|
|
),
|
|
finish_reason=Finish.STOP,
|
|
)
|
|
usage = UsageInfo(
|
|
prompt_tokens=response.usage.prompt_tokens,
|
|
completion_tokens=response.usage.completion_tokens,
|
|
total_tokens=response.usage.total_tokens,
|
|
)
|
|
return ChatCompletionResponse(
|
|
id="request_id",
|
|
model=response.model,
|
|
choices=[choice],
|
|
usage=usage,
|
|
)
|
|
|
|
|
|
class RESTFulOpenAIBootstrapBaseWeb(OpenAIBootstrapBaseWeb):
|
|
"""
|
|
Bootstrap Server Lifecycle
|
|
"""
|
|
|
|
def __init__(self, host: str, port: int):
|
|
super().__init__()
|
|
self._host = host
|
|
self._port = port
|
|
self._router = APIRouter()
|
|
self._app = FastAPI()
|
|
self._server_thread = None
|
|
|
|
@classmethod
|
|
def from_config(cls, cfg=None):
|
|
host = cfg.get("host", "127.0.0.1")
|
|
port = cfg.get("port", 20000)
|
|
|
|
logger.info(
|
|
f"Starting openai Bootstrap Server Lifecycle at endpoint: http://{host}:{port}"
|
|
)
|
|
return cls(host=host, port=port)
|
|
|
|
def serve(self, logging_conf: Optional[dict] = None):
|
|
self._app.add_middleware(
|
|
CORSMiddleware,
|
|
allow_origins=["*"],
|
|
allow_credentials=True,
|
|
allow_methods=["*"],
|
|
allow_headers=["*"],
|
|
)
|
|
|
|
self._router.add_api_route(
|
|
"/{provider}/v1/models",
|
|
self.list_models,
|
|
response_model=ModelList,
|
|
methods=["GET"],
|
|
)
|
|
|
|
self._router.add_api_route(
|
|
"/{provider}/v1/embeddings",
|
|
self.create_embeddings,
|
|
response_model=EmbeddingsResponse,
|
|
status_code=status.HTTP_200_OK,
|
|
methods=["POST"],
|
|
)
|
|
self._router.add_api_route(
|
|
"/{provider}/v1/chat/completions",
|
|
self.create_chat_completion,
|
|
response_model=ChatCompletionResponse,
|
|
status_code=status.HTTP_200_OK,
|
|
methods=["POST"],
|
|
)
|
|
|
|
self._app.include_router(self._router)
|
|
|
|
config = Config(
|
|
app=self._app, host=self._host, port=self._port, log_config=logging_conf
|
|
)
|
|
server = Server(config)
|
|
|
|
def run_server():
|
|
server.run()
|
|
|
|
self._server_thread = threading.Thread(target=run_server)
|
|
self._server_thread.start()
|
|
|
|
async def join(self):
|
|
await self._server_thread.join()
|
|
|
|
def set_app_event(self, started_event: mp.Event = None):
|
|
@self._app.on_event("startup")
|
|
async def on_startup():
|
|
if started_event is not None:
|
|
started_event.set()
|
|
|
|
async def list_models(self, provider: str, request: Request):
|
|
logger.info(f"Received list_models request for provider: {provider}")
|
|
# 返回ModelType所有的枚举
|
|
llm_models: list[AIModelEntity] = []
|
|
for model_type in ModelType.__members__.values():
|
|
try:
|
|
provider_model_bundle = (
|
|
self._provider_manager.provider_manager.get_provider_model_bundle(
|
|
provider=provider, model_type=model_type
|
|
)
|
|
)
|
|
llm_models.extend(
|
|
provider_model_bundle.model_type_instance.predefined_models()
|
|
)
|
|
except Exception as e:
|
|
logger.error(
|
|
f"Error while fetching models for provider: {provider}, model_type: {model_type}"
|
|
)
|
|
logger.error(e)
|
|
|
|
# models list[AIModelEntity]转换称List[ModelCard]
|
|
|
|
models_list = [
|
|
ModelCard(id=model.model, object=model.model_type.to_origin_model_type())
|
|
for model in llm_models
|
|
]
|
|
|
|
return ModelList(data=models_list)
|
|
|
|
async def create_embeddings(
|
|
self, provider: str, request: Request, embeddings_request: EmbeddingsRequest
|
|
):
|
|
logger.info(
|
|
f"Received create_embeddings request: {pprint.pformat(embeddings_request.dict())}"
|
|
)
|
|
|
|
response = None
|
|
return EmbeddingsResponse(**dictify(response))
|
|
|
|
async def create_chat_completion(
|
|
self, provider: str, request: Request, chat_request: ChatCompletionRequest
|
|
):
|
|
logger.info(
|
|
f"Received chat completion request: {pprint.pformat(chat_request.dict())}"
|
|
)
|
|
|
|
model_instance = self._provider_manager.get_model_instance(
|
|
provider=provider, model_type=ModelType.LLM, model=chat_request.model
|
|
)
|
|
prompt_messages = [
|
|
_convert_to_message(message) for message in chat_request.messages
|
|
]
|
|
|
|
tools = []
|
|
if chat_request.tools:
|
|
tools = [
|
|
PromptMessageTool(
|
|
name=f.function.name,
|
|
description=f.function.description,
|
|
parameters=f.function.parameters,
|
|
)
|
|
for f in chat_request.tools
|
|
]
|
|
if chat_request.functions:
|
|
tools.extend(
|
|
[
|
|
PromptMessageTool(
|
|
name=f.name, description=f.description, parameters=f.parameters
|
|
)
|
|
for f in chat_request.functions
|
|
]
|
|
)
|
|
|
|
try:
|
|
response = model_instance.invoke_llm(
|
|
prompt_messages=prompt_messages,
|
|
model_parameters={**chat_request.to_model_parameters_dict()},
|
|
tools=tools,
|
|
stop=chat_request.stop,
|
|
stream=chat_request.stream,
|
|
user="abc-123",
|
|
)
|
|
|
|
if chat_request.stream:
|
|
return EventSourceResponse(
|
|
_stream_openai_chat_completion(response),
|
|
media_type="text/event-stream",
|
|
)
|
|
else:
|
|
return await _openai_chat_completion(response)
|
|
except ValueError as e:
|
|
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail=str(e))
|
|
|
|
except InvokeError as e:
|
|
raise HTTPException(
|
|
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail=str(e)
|
|
)
|
|
|
|
|
|
def run(
|
|
cfg: Dict,
|
|
logging_conf: Optional[dict] = None,
|
|
started_event: mp.Event = None,
|
|
):
|
|
logging.config.dictConfig(logging_conf) # type: ignore
|
|
try:
|
|
api = RESTFulOpenAIBootstrapBaseWeb.from_config(
|
|
cfg=cfg.get("run_openai_api", {})
|
|
)
|
|
api.set_app_event(started_event=started_event)
|
|
api.serve(logging_conf=logging_conf)
|
|
|
|
async def pool_join_thread():
|
|
await api.join()
|
|
|
|
asyncio.run(pool_join_thread())
|
|
except SystemExit:
|
|
logger.info("SystemExit raised, exiting")
|
|
raise
|