liunux4odoo 3acbf4d5d1
增加数据库字段,重建知识库使用多线程 (#1280)
* close #1172: 给webui_page/utils添加一些log信息,方便定位错误

* 修复:重建知识库时页面未实时显示进度

* skip model_worker running when using online model api such as chatgpt

* 修改知识库管理相关内容:
1.KnowledgeFileModel增加3个字段:file_mtime(文件修改时间),file_size(文件大小),custom_docs(是否使用自定义docs)。为后面比对上传文件做准备。
2.给所有String字段加上长度,防止mysql建表错误(pr#1177)
3.统一[faiss/milvus/pgvector]_kb_service.add_doc接口,使其支持自定义docs
4.为faiss_kb_service增加一些方法,便于调用
5.为KnowledgeFile增加一些方法,便于获取文件信息,缓存file2text的结果。

* 修复/chat/fastchat无法流式输出的问题

* 新增功能:
1、KnowledgeFileModel增加"docs_count"字段,代表该文件加载到向量库中的Document数量,并在WEBUI中进行展示。
2、重建知识库`python init_database.py --recreate-vs`支持多线程。

其它:
统一代码中知识库相关函数用词:file代表一个文件名称或路径,doc代表langchain加载后的Document。部分与API接口有关或含义重叠的函数暂未修改。

---------

Co-authored-by: liunux4odoo <liunux@qq.com>, hongkong9771
2023-08-28 13:50:35 +08:00

81 lines
2.8 KiB
Python

from typing import List
import numpy as np
from faiss import normalize_L2
from langchain.embeddings.base import Embeddings
from langchain.schema import Document
from langchain.vectorstores import Milvus
from sklearn.preprocessing import normalize
from configs.model_config import SCORE_THRESHOLD, kbs_config
from server.knowledge_base.kb_service.base import KBService, SupportedVSType, EmbeddingsFunAdapter, \
score_threshold_process
from server.knowledge_base.utils import KnowledgeFile
class MilvusKBService(KBService):
milvus: Milvus
@staticmethod
def get_collection(milvus_name):
from pymilvus import Collection
return Collection(milvus_name)
@staticmethod
def search(milvus_name, content, limit=3):
search_params = {
"metric_type": "L2",
"params": {"nprobe": 10},
}
c = MilvusKBService.get_collection(milvus_name)
return c.search(content, "embeddings", search_params, limit=limit, output_fields=["content"])
def do_create_kb(self):
pass
def vs_type(self) -> str:
return SupportedVSType.MILVUS
def _load_milvus(self, embeddings: Embeddings = None):
if embeddings is None:
embeddings = self._load_embeddings()
self.milvus = Milvus(embedding_function=EmbeddingsFunAdapter(embeddings),
collection_name=self.kb_name, connection_args=kbs_config.get("milvus"))
def do_init(self):
self._load_milvus()
def do_drop_kb(self):
if self.milvus.col:
self.milvus.col.drop()
def do_search(self, query: str, top_k: int, score_threshold: float, embeddings: Embeddings):
self._load_milvus(embeddings=EmbeddingsFunAdapter(embeddings))
return score_threshold_process(score_threshold, top_k, self.milvus.similarity_search_with_score(query, top_k))
def do_add_doc(self, docs: List[Document], embeddings: Embeddings, **kwargs):
self.milvus.add_documents(docs)
def do_delete_doc(self, kb_file: KnowledgeFile, **kwargs):
filepath = kb_file.filepath.replace('\\', '\\\\')
delete_list = [item.get("pk") for item in
self.milvus.col.query(expr=f'source == "{filepath}"', output_fields=["pk"])]
self.milvus.col.delete(expr=f'pk in {delete_list}')
def do_clear_vs(self):
if self.milvus.col:
self.milvus.col.drop()
if __name__ == '__main__':
# 测试建表使用
from server.db.base import Base, engine
Base.metadata.create_all(bind=engine)
milvusService = MilvusKBService("test")
milvusService.add_doc(KnowledgeFile("README.md", "test"))
milvusService.delete_doc(KnowledgeFile("README.md", "test"))
milvusService.do_drop_kb()
print(milvusService.search_docs("如何启动api服务"))