liunux4odoo d316efe8d3
release 0.2.6 (#1815)
## 🛠 新增功能

- 支持百川在线模型 (@hzg0601 @liunux4odoo in #1623)
- 支持 Azure OpenAI 与 claude 等 Langchain 自带模型 (@zRzRzRzRzRzRzR in #1808)
- Agent 功能大量更新,支持更多的工具、更换提示词、检索知识库 (@zRzRzRzRzRzRzR in #1626 #1666 #1785)
- 加长 32k 模型的历史记录 (@zRzRzRzRzRzRzR in #1629 #1630)
- *_chat 接口支持 max_tokens 参数 (@liunux4odoo in #1744)
- 实现 API 和 WebUI 的前后端分离 (@liunux4odoo in #1772)
- 支持 zlilliz 向量库 (@zRzRzRzRzRzRzR in #1785)
- 支持 metaphor 搜索引擎 (@liunux4odoo in #1792)
- 支持 p-tuning 模型 (@hzg0601 in #1810)
- 更新完善文档和 Wiki (@imClumsyPanda @zRzRzRzRzRzRzR @glide-the in #1680 #1811)

## 🐞 问题修复

- 修复 bge-* 模型匹配超过 1 的问题 (@zRzRzRzRzRzRzR in #1652)
- 修复系统代理为空的问题 (@glide-the in #1654)
- 修复重建知识库时 `d == self.d assert error` (@liunux4odoo in #1766)
- 修复对话历史消息错误 (@liunux4odoo in #1801)
- 修复 OpenAI 无法调用的 bug (@zRzRzRzRzRzRzR in #1808)
- 修复 windows下 BIND_HOST=0.0.0.0 时对话出错的问题 (@hzg0601 in #1810)
2023-10-20 23:16:06 +08:00

88 lines
2.6 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

from configs.basic_config import LOG_PATH
import fastchat.constants
fastchat.constants.LOGDIR = LOG_PATH
from fastchat.serve.base_model_worker import BaseModelWorker
import uuid
import json
import sys
from pydantic import BaseModel
import fastchat
import asyncio
from typing import Dict, List
# 恢复被fastchat覆盖的标准输出
sys.stdout = sys.__stdout__
sys.stderr = sys.__stderr__
class ApiModelOutMsg(BaseModel):
error_code: int = 0
text: str
class ApiModelWorker(BaseModelWorker):
BASE_URL: str
SUPPORT_MODELS: List
def __init__(
self,
model_names: List[str],
controller_addr: str,
worker_addr: str,
context_len: int = 2048,
**kwargs,
):
kwargs.setdefault("worker_id", uuid.uuid4().hex[:8])
kwargs.setdefault("model_path", "")
kwargs.setdefault("limit_worker_concurrency", 5)
super().__init__(model_names=model_names,
controller_addr=controller_addr,
worker_addr=worker_addr,
**kwargs)
self.context_len = context_len
self.semaphore = asyncio.Semaphore(self.limit_worker_concurrency)
self.init_heart_beat()
def count_token(self, params):
# TODO需要完善
# print("count token")
prompt = params["prompt"]
return {"count": len(str(prompt)), "error_code": 0}
def generate_stream_gate(self, params):
self.call_ct += 1
def generate_gate(self, params):
for x in self.generate_stream_gate(params):
pass
return json.loads(x[:-1].decode())
def get_embeddings(self, params):
print("embedding")
# print(params)
# help methods
def get_config(self):
from server.utils import get_model_worker_config
return get_model_worker_config(self.model_names[0])
def prompt_to_messages(self, prompt: str) -> List[Dict]:
'''
将prompt字符串拆分成messages.
'''
result = []
user_role = self.conv.roles[0]
ai_role = self.conv.roles[1]
user_start = user_role + ":"
ai_start = ai_role + ":"
for msg in prompt.split(self.conv.sep)[1:-1]:
if msg.startswith(user_start):
if content := msg[len(user_start):].strip():
result.append({"role": user_role, "content": content})
elif msg.startswith(ai_start):
if content := msg[len(ai_start):].strip():
result.append({"role": ai_role, "content": content})
else:
raise RuntimeError(f"unknown role in msg: {msg}")
return result