Langchain-Chatchat/configs/model_config.py
shrimp 7497b261b3
完善知识库路径问题,完善api接口 (#245)
* Fix 知识库无法上载,NLTK_DATA_PATH路径错误 (#236)

* Update chatglm_llm.py (#242)

* 完善知识库路径问题,完善api接口

统一webui、API接口知识库路径,后续路径如下:
知识库路经就是:/项目代码文件夹/vector_store/'知识库名字'
文件存放路经:/项目代码文件夹/content/'知识库名字'

修复通过api接口创建知识库的BUG,完善API接口功能。

* Update model_config.py

---------

Co-authored-by: Bob Chang <bob-chang@outlook.com>
Co-authored-by: imClumsyPanda <littlepanda0716@gmail.com>
2023-05-05 18:44:37 +08:00

63 lines
2.0 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import torch.cuda
import torch.backends
import os
embedding_model_dict = {
"ernie-tiny": "nghuyong/ernie-3.0-nano-zh",
"ernie-base": "nghuyong/ernie-3.0-base-zh",
"text2vec-base": "shibing624/text2vec-base-chinese",
"text2vec": "GanymedeNil/text2vec-large-chinese",
}
# Embedding model name
EMBEDDING_MODEL = "text2vec"
# Embedding running device
EMBEDDING_DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
# supported LLM models
llm_model_dict = {
"chatyuan": "ClueAI/ChatYuan-large-v2",
"chatglm-6b-int4-qe": "THUDM/chatglm-6b-int4-qe",
"chatglm-6b-int4": "THUDM/chatglm-6b-int4",
"chatglm-6b-int8": "THUDM/chatglm-6b-int8",
"chatglm-6b": "THUDM/chatglm-6b",
}
# LLM model name
LLM_MODEL = "chatglm-6b"
# LLM lora path默认为空如果有请直接指定文件夹路径
LLM_LORA_PATH = ""
USE_LORA = True if LLM_LORA_PATH else False
# LLM streaming reponse
STREAMING = True
# Use p-tuning-v2 PrefixEncoder
USE_PTUNING_V2 = False
# LLM running device
LLM_DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
VS_ROOT_PATH = os.path.join(os.path.dirname(os.path.dirname(__file__)), "vector_store")
UPLOAD_ROOT_PATH = os.path.join(os.path.dirname(os.path.dirname(__file__)), "content")
# 基于上下文的prompt模版请务必保留"{question}"和"{context}"
PROMPT_TEMPLATE = """已知信息:
{context}
根据上述已知信息,简洁和专业的来回答用户的问题。如果无法从中得到答案,请说 “根据已知信息无法回答该问题” 或 “没有提供足够的相关信息”,不允许在答案中添加编造成分,答案请使用中文。 问题是:{question}"""
# 匹配后单段上下文长度
CHUNK_SIZE = 250
# LLM input history length
LLM_HISTORY_LEN = 3
# return top-k text chunk from vector store
VECTOR_SEARCH_TOP_K = 5
NLTK_DATA_PATH = os.path.join(os.path.dirname(os.path.dirname(__file__)), "nltk_data")