liunux4odoo 9c525b7fa5
publish 0.2.10 (#2797)
新功能:
- 优化 PDF 文件的 OCR,过滤无意义的小图片 by @liunux4odoo #2525
- 支持 Gemini 在线模型 by @yhfgyyf #2630
- 支持 GLM4 在线模型 by @zRzRzRzRzRzRzR
- elasticsearch更新https连接 by @xldistance #2390
- 增强对PPT、DOC知识库文件的OCR识别 by @596192804 #2013
- 更新 Agent 对话功能 by @zRzRzRzRzRzRzR
- 每次创建对象时从连接池获取连接,避免每次执行方法时都新建连接 by @Lijia0 #2480
- 实现 ChatOpenAI 判断token有没有超过模型的context上下文长度 by @glide-the
- 更新运行数据库报错和项目里程碑 by @zRzRzRzRzRzRzR #2659
- 更新配置文件/文档/依赖 by @imClumsyPanda @zRzRzRzRzRzRzR
- 添加日文版 readme by @eltociear #2787

修复:
- langchain 更新后,PGVector 向量库连接错误 by @HALIndex #2591
- Minimax's model worker 错误 by @xyhshen 
- ES库无法向量检索.添加mappings创建向量索引 by MSZheng20 #2688
2024-01-26 06:58:49 +08:00

129 lines
4.5 KiB
Python

import json
import sys
from fastchat.conversation import Conversation
from configs import TEMPERATURE
from http import HTTPStatus
from typing import List, Literal, Dict
from fastchat import conversation as conv
from server.model_workers.base import *
from server.model_workers.base import ApiEmbeddingsParams
from configs import logger, log_verbose
class QwenWorker(ApiModelWorker):
DEFAULT_EMBED_MODEL = "text-embedding-v1"
def __init__(
self,
*,
version: Literal["qwen-turbo", "qwen-plus"] = "qwen-turbo",
model_names: List[str] = ["qwen-api"],
controller_addr: str = None,
worker_addr: str = None,
**kwargs,
):
kwargs.update(model_names=model_names, controller_addr=controller_addr, worker_addr=worker_addr)
kwargs.setdefault("context_len", 16384)
super().__init__(**kwargs)
self.version = version
def do_chat(self, params: ApiChatParams) -> Dict:
import dashscope
params.load_config(self.model_names[0])
if log_verbose:
logger.info(f'{self.__class__.__name__}:params: {params}')
gen = dashscope.Generation()
responses = gen.call(
model=params.version,
temperature=params.temperature,
api_key=params.api_key,
messages=params.messages,
result_format='message', # set the result is message format.
stream=True,
)
for resp in responses:
if resp["status_code"] == 200:
if choices := resp["output"]["choices"]:
yield {
"error_code": 0,
"text": choices[0]["message"]["content"],
}
else:
data = {
"error_code": resp["status_code"],
"text": resp["message"],
"error": {
"message": resp["message"],
"type": "invalid_request_error",
"param": None,
"code": None,
}
}
self.logger.error(f"请求千问 API 时发生错误:{data}")
yield data
def do_embeddings(self, params: ApiEmbeddingsParams) -> Dict:
import dashscope
params.load_config(self.model_names[0])
if log_verbose:
logger.info(f'{self.__class__.__name__}:params: {params}')
result = []
i = 0
while i < len(params.texts):
texts = params.texts[i:i+25]
resp = dashscope.TextEmbedding.call(
model=params.embed_model or self.DEFAULT_EMBED_MODEL,
input=texts, # 最大25行
api_key=params.api_key,
)
if resp["status_code"] != 200:
data = {
"code": resp["status_code"],
"msg": resp.message,
"error": {
"message": resp["message"],
"type": "invalid_request_error",
"param": None,
"code": None,
}
}
self.logger.error(f"请求千问 API 时发生错误:{data}")
return data
else:
embeddings = [x["embedding"] for x in resp["output"]["embeddings"]]
result += embeddings
i += 25
return {"code": 200, "data": result}
def get_embeddings(self, params):
print("embedding")
print(params)
def make_conv_template(self, conv_template: str = None, model_path: str = None) -> Conversation:
return conv.Conversation(
name=self.model_names[0],
system_message="你是一个聪明、对人类有帮助的人工智能,你可以对人类提出的问题给出有用、详细、礼貌的回答。",
messages=[],
roles=["user", "assistant", "system"],
sep="\n### ",
stop_str="###",
)
if __name__ == "__main__":
import uvicorn
from server.utils import MakeFastAPIOffline
from fastchat.serve.model_worker import app
worker = QwenWorker(
controller_addr="http://127.0.0.1:20001",
worker_addr="http://127.0.0.1:20007",
)
sys.modules["fastchat.serve.model_worker"].worker = worker
MakeFastAPIOffline(app)
uvicorn.run(app, port=20007)