mirror of
https://github.com/RYDE-WORK/Langchain-Chatchat.git
synced 2026-01-21 22:33:53 +08:00
237 lines
8.2 KiB
Python
237 lines
8.2 KiB
Python
import asyncio
|
||
import os
|
||
from typing import Optional, Any, Dict
|
||
|
||
from fastapi import (APIRouter,
|
||
FastAPI,
|
||
HTTPException,
|
||
Response,
|
||
Request,
|
||
status
|
||
)
|
||
import logging
|
||
from model_providers.core.bootstrap import OpenAIBootstrapBaseWeb
|
||
import json
|
||
import pprint
|
||
import tiktoken
|
||
from model_providers.core.bootstrap.openai_protocol import ChatCompletionRequest, EmbeddingsRequest, \
|
||
ChatCompletionResponse, ModelList, EmbeddingsResponse, ChatCompletionStreamResponse, FunctionAvailable
|
||
from uvicorn import Config, Server
|
||
from fastapi.middleware.cors import CORSMiddleware
|
||
import multiprocessing as mp
|
||
import threading
|
||
from sse_starlette import EventSourceResponse
|
||
|
||
from model_providers.core.model_runtime.entities.message_entities import UserPromptMessage
|
||
from model_providers.core.model_runtime.entities.model_entities import ModelType
|
||
from model_providers.core.model_runtime.model_providers.__base.ai_model import AIModel
|
||
from model_providers.core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
||
from model_providers.core.utils.generic import dictify, jsonify
|
||
|
||
from model_providers.core.model_runtime.model_providers import model_provider_factory
|
||
|
||
logger = logging.getLogger(__name__)
|
||
|
||
|
||
async def create_stream_chat_completion(model_type_instance: LargeLanguageModel, chat_request: ChatCompletionRequest):
|
||
try:
|
||
|
||
|
||
response = model_type_instance.invoke(
|
||
model=chat_request.model,
|
||
credentials={
|
||
'openai_api_key': "sk-",
|
||
'minimax_api_key': os.environ.get('MINIMAX_API_KEY'),
|
||
'minimax_group_id': os.environ.get('MINIMAX_GROUP_ID')
|
||
},
|
||
prompt_messages=[
|
||
UserPromptMessage(
|
||
content='北京今天的天气怎么样'
|
||
)
|
||
],
|
||
model_parameters={
|
||
**chat_request.to_model_parameters_dict()
|
||
},
|
||
stop=chat_request.stop,
|
||
stream=chat_request.stream,
|
||
user="abc-123"
|
||
)
|
||
return response
|
||
|
||
except Exception as e:
|
||
logger.exception(e)
|
||
raise HTTPException(status_code=500, detail=str(e))
|
||
|
||
|
||
class RESTFulOpenAIBootstrapBaseWeb(OpenAIBootstrapBaseWeb):
|
||
"""
|
||
Bootstrap Server Lifecycle
|
||
"""
|
||
|
||
def __init__(self, host: str, port: int):
|
||
super().__init__()
|
||
self._host = host
|
||
self._port = port
|
||
self._router = APIRouter()
|
||
self._app = FastAPI()
|
||
self._server_thread = None
|
||
|
||
@classmethod
|
||
def from_config(cls, cfg=None):
|
||
host = cfg.get("host", "127.0.0.1")
|
||
port = cfg.get("port", 20000)
|
||
|
||
logger.info(f"Starting openai Bootstrap Server Lifecycle at endpoint: http://{host}:{port}")
|
||
return cls(host=host, port=port)
|
||
|
||
def serve(self, logging_conf: Optional[dict] = None):
|
||
self._app.add_middleware(
|
||
CORSMiddleware,
|
||
allow_origins=["*"],
|
||
allow_credentials=True,
|
||
allow_methods=["*"],
|
||
allow_headers=["*"],
|
||
)
|
||
|
||
self._router.add_api_route(
|
||
"/v1/models",
|
||
self.list_models,
|
||
response_model=ModelList,
|
||
methods=["GET"],
|
||
)
|
||
|
||
self._router.add_api_route(
|
||
"/v1/embeddings",
|
||
self.create_embeddings,
|
||
response_model=EmbeddingsResponse,
|
||
status_code=status.HTTP_200_OK,
|
||
methods=["POST"],
|
||
)
|
||
self._router.add_api_route(
|
||
"/v1/chat/completions",
|
||
self.create_chat_completion,
|
||
response_model=ChatCompletionResponse,
|
||
status_code=status.HTTP_200_OK,
|
||
methods=["POST"],
|
||
)
|
||
|
||
self._app.include_router(self._router)
|
||
|
||
config = Config(
|
||
app=self._app, host=self._host, port=self._port, log_config=logging_conf
|
||
)
|
||
server = Server(config)
|
||
|
||
def run_server():
|
||
server.run()
|
||
|
||
self._server_thread = threading.Thread(target=run_server)
|
||
self._server_thread.start()
|
||
|
||
async def join(self):
|
||
await self._server_thread.join()
|
||
|
||
def set_app_event(self, started_event: mp.Event = None):
|
||
@self._app.on_event("startup")
|
||
async def on_startup():
|
||
if started_event is not None:
|
||
started_event.set()
|
||
|
||
async def list_models(self, request: Request):
|
||
pass
|
||
|
||
async def create_embeddings(self, request: Request, embeddings_request: EmbeddingsRequest):
|
||
logger.info(f"Received create_embeddings request: {pprint.pformat(embeddings_request.dict())}")
|
||
if os.environ["API_KEY"] is None:
|
||
authorization = request.headers.get("Authorization")
|
||
authorization = authorization.split("Bearer ")[-1]
|
||
else:
|
||
authorization = os.environ["API_KEY"]
|
||
client = ZhipuAI(api_key=authorization)
|
||
# 判断embeddings_request.input是否为list
|
||
input = None
|
||
if isinstance(embeddings_request.input, list):
|
||
tokens = embeddings_request.input
|
||
try:
|
||
encoding = tiktoken.encoding_for_model(embeddings_request.model)
|
||
except KeyError:
|
||
logger.warning("Warning: model not found. Using cl100k_base encoding.")
|
||
model = "cl100k_base"
|
||
encoding = tiktoken.get_encoding(model)
|
||
for i, token in enumerate(tokens):
|
||
text = encoding.decode(token)
|
||
input += text
|
||
|
||
else:
|
||
input = embeddings_request.input
|
||
|
||
response = client.embeddings.create(
|
||
model=embeddings_request.model,
|
||
input=input,
|
||
)
|
||
return EmbeddingsResponse(**dictify(response))
|
||
|
||
async def create_chat_completion(self, request: Request, chat_request: ChatCompletionRequest):
|
||
logger.info(f"Received chat completion request: {pprint.pformat(chat_request.dict())}")
|
||
if os.environ["API_KEY"] is None:
|
||
authorization = request.headers.get("Authorization")
|
||
authorization = authorization.split("Bearer ")[-1]
|
||
else:
|
||
authorization = os.environ["API_KEY"]
|
||
model_provider_factory.get_providers(provider_name='openai')
|
||
provider_instance = model_provider_factory.get_provider_instance('openai')
|
||
model_type_instance = provider_instance.get_model_instance(ModelType.LLM)
|
||
if chat_request.stream:
|
||
generator = create_stream_chat_completion(model_type_instance, chat_request)
|
||
return EventSourceResponse(generator, media_type="text/event-stream")
|
||
else:
|
||
|
||
response = model_type_instance.invoke(
|
||
model='gpt-4',
|
||
credentials={
|
||
'openai_api_key': "sk-",
|
||
'minimax_api_key': os.environ.get('MINIMAX_API_KEY'),
|
||
'minimax_group_id': os.environ.get('MINIMAX_GROUP_ID')
|
||
},
|
||
prompt_messages=[
|
||
UserPromptMessage(
|
||
content='北京今天的天气怎么样'
|
||
)
|
||
],
|
||
model_parameters={
|
||
'temperature': 0.7,
|
||
'top_p': 1.0,
|
||
'top_k': 1,
|
||
'plugin_web_search': True,
|
||
},
|
||
stop=['you'],
|
||
stream=False,
|
||
user="abc-123"
|
||
)
|
||
|
||
chat_response = ChatCompletionResponse(**dictify(response))
|
||
|
||
return chat_response
|
||
|
||
|
||
def run(
|
||
cfg: Dict, logging_conf: Optional[dict] = None,
|
||
started_event: mp.Event = None,
|
||
):
|
||
logging.config.dictConfig(logging_conf) # type: ignore
|
||
try:
|
||
import signal
|
||
# 跳过键盘中断,使用xoscar的信号处理
|
||
signal.signal(signal.SIGINT, lambda *_: None)
|
||
api = RESTFulOpenAIBootstrapBaseWeb.from_config(cfg=cfg.get("run_openai_api", {}))
|
||
api.set_app_event(started_event=started_event)
|
||
api.serve(logging_conf=logging_conf)
|
||
|
||
async def pool_join_thread():
|
||
await api.join()
|
||
|
||
asyncio.run(pool_join_thread())
|
||
except SystemExit:
|
||
logger.info("SystemExit raised, exiting")
|
||
raise
|