mirror of
https://github.com/RYDE-WORK/Langchain-Chatchat.git
synced 2026-01-23 07:13:27 +08:00
242 lines
9.7 KiB
Python
242 lines
9.7 KiB
Python
import asyncio
|
|
import json
|
|
import time
|
|
from typing import AsyncIterable, List
|
|
import uuid
|
|
|
|
from fastapi import Body
|
|
from sse_starlette.sse import EventSourceResponse
|
|
from langchain_core.output_parsers import StrOutputParser
|
|
from langchain_core.messages import AIMessage, HumanMessage, convert_to_messages
|
|
|
|
from langchain.chains import LLMChain
|
|
from langchain.prompts.chat import ChatPromptTemplate
|
|
from langchain.prompts import PromptTemplate
|
|
|
|
from chatchat.configs import LLM_MODEL_CONFIG
|
|
from chatchat.server.agent.agent_factory.agents_registry import agents_registry
|
|
from chatchat.server.agent.container import container
|
|
from chatchat.server.api_server.api_schemas import OpenAIChatOutput
|
|
from chatchat.server.utils import wrap_done, get_ChatOpenAI, get_prompt_template, MsgType, get_tool
|
|
from chatchat.server.chat.utils import History
|
|
from chatchat.server.memory.conversation_db_buffer_memory import ConversationBufferDBMemory
|
|
from chatchat.server.callback_handler.agent_callback_handler import AgentExecutorAsyncIteratorCallbackHandler, AgentStatus
|
|
|
|
|
|
def create_models_from_config(configs, callbacks, stream):
|
|
configs = configs or LLM_MODEL_CONFIG
|
|
models = {}
|
|
prompts = {}
|
|
for model_type, model_configs in configs.items():
|
|
for model_name, params in model_configs.items():
|
|
callbacks = callbacks if params.get('callbacks', False) else None
|
|
model_instance = get_ChatOpenAI(
|
|
model_name=model_name,
|
|
temperature=params.get('temperature', 0.5),
|
|
max_tokens=params.get('max_tokens', 1000),
|
|
callbacks=callbacks,
|
|
streaming=stream,
|
|
local_wrap=True,
|
|
)
|
|
models[model_type] = model_instance
|
|
prompt_name = params.get('prompt_name', 'default')
|
|
prompt_template = get_prompt_template(type=model_type, name=prompt_name)
|
|
prompts[model_type] = prompt_template
|
|
return models, prompts
|
|
|
|
|
|
def create_models_chains(history, history_len, prompts, models, tools, callbacks, conversation_id, metadata):
|
|
memory = None
|
|
chat_prompt = None
|
|
container.metadata = metadata
|
|
|
|
if history:
|
|
history = [History.from_data(h) for h in history]
|
|
input_msg = History(role="user", content=prompts["llm_model"]).to_msg_template(False)
|
|
chat_prompt = ChatPromptTemplate.from_messages(
|
|
[i.to_msg_template() for i in history] + [input_msg])
|
|
elif conversation_id and history_len > 0:
|
|
memory = ConversationBufferDBMemory(
|
|
conversation_id=conversation_id,
|
|
llm=models["llm_model"],
|
|
message_limit=history_len
|
|
)
|
|
else:
|
|
input_msg = History(role="user", content=prompts["llm_model"]).to_msg_template(False)
|
|
chat_prompt = ChatPromptTemplate.from_messages([input_msg])
|
|
|
|
llm=models["llm_model"]
|
|
llm.callbacks = callbacks
|
|
chain = LLMChain(
|
|
prompt=chat_prompt,
|
|
llm=llm,
|
|
memory=memory
|
|
)
|
|
classifier_chain = (
|
|
PromptTemplate.from_template(prompts["preprocess_model"])
|
|
| models["preprocess_model"]
|
|
| StrOutputParser()
|
|
)
|
|
|
|
if "action_model" in models and tools is not None:
|
|
agent_executor = agents_registry(
|
|
llm=llm,
|
|
callbacks=callbacks,
|
|
tools=tools,
|
|
prompt=None,
|
|
verbose=True
|
|
)
|
|
# branch = RunnableBranch(
|
|
# (lambda x: "1" in x["topic"].lower(), agent_executor),
|
|
# chain
|
|
# )
|
|
# full_chain = ({"topic": classifier_chain, "input": lambda x: x["input"]} | branch)
|
|
full_chain = ({"input": lambda x: x["input"]} | agent_executor)
|
|
else:
|
|
chain.llm.callbacks = callbacks
|
|
full_chain = ({"input": lambda x: x["input"]} | chain)
|
|
return full_chain
|
|
|
|
|
|
async def chat(query: str = Body(..., description="用户输入", examples=["恼羞成怒"]),
|
|
metadata: dict = Body({}, description="附件,可能是图像或者其他功能", examples=[]),
|
|
conversation_id: str = Body("", description="对话框ID"),
|
|
message_id: str = Body(None, description="数据库消息ID"),
|
|
history_len: int = Body(-1, description="从数据库中取历史消息的数量"),
|
|
history: List[History] = Body(
|
|
[],
|
|
description="历史对话,设为一个整数可以从数据库中读取历史消息",
|
|
examples=[
|
|
[
|
|
{"role": "user",
|
|
"content": "我们来玩成语接龙,我先来,生龙活虎"},
|
|
{"role": "assistant", "content": "虎头虎脑"}
|
|
]
|
|
]
|
|
),
|
|
stream: bool = Body(True, description="流式输出"),
|
|
chat_model_config: dict = Body({}, description="LLM 模型配置", examples=[]),
|
|
tool_config: dict = Body({}, description="工具配置", examples=[]),
|
|
):
|
|
'''Agent 对话'''
|
|
|
|
async def chat_iterator() -> AsyncIterable[OpenAIChatOutput]:
|
|
callback = AgentExecutorAsyncIteratorCallbackHandler()
|
|
callbacks = [callback]
|
|
models, prompts = create_models_from_config(callbacks=callbacks, configs=chat_model_config,
|
|
stream=stream)
|
|
all_tools = get_tool().values()
|
|
tools = [tool for tool in all_tools if tool.name in tool_config]
|
|
tools = [t.copy(update={"callbacks": callbacks}) for t in tools]
|
|
full_chain = create_models_chains(prompts=prompts,
|
|
models=models,
|
|
conversation_id=conversation_id,
|
|
tools=tools,
|
|
callbacks=callbacks,
|
|
history=history,
|
|
history_len=history_len,
|
|
metadata=metadata)
|
|
|
|
_history = [History.from_data(h) for h in history]
|
|
chat_history = [h.to_msg_tuple() for h in _history]
|
|
|
|
history_message = convert_to_messages(chat_history)
|
|
|
|
task = asyncio.create_task(wrap_done(
|
|
full_chain.ainvoke(
|
|
{
|
|
"input": query,
|
|
"chat_history": history_message,
|
|
}
|
|
), callback.done))
|
|
|
|
last_tool = {}
|
|
async for chunk in callback.aiter():
|
|
data = json.loads(chunk)
|
|
data["tool_calls"] = []
|
|
data["message_type"] = MsgType.TEXT
|
|
|
|
if data["status"] == AgentStatus.tool_start:
|
|
last_tool = {
|
|
"index": 0,
|
|
"id": data["run_id"],
|
|
"type": "function",
|
|
"function": {
|
|
"name": data["tool"],
|
|
"arguments": data["tool_input"],
|
|
},
|
|
"tool_output": None,
|
|
"is_error": False,
|
|
}
|
|
data["tool_calls"].append(last_tool)
|
|
if data["status"] in [AgentStatus.tool_end]:
|
|
last_tool.update(
|
|
tool_output=data["tool_output"],
|
|
is_error=data.get("is_error", False)
|
|
)
|
|
data["tool_calls"] = [last_tool]
|
|
last_tool = {}
|
|
try:
|
|
tool_output = json.loads(data["tool_output"])
|
|
if message_type := tool_output.get("message_type"):
|
|
data["message_type"] = message_type
|
|
except:
|
|
...
|
|
elif data["status"] == AgentStatus.agent_finish:
|
|
try:
|
|
tool_output = json.loads(data["text"])
|
|
if message_type := tool_output.get("message_type"):
|
|
data["message_type"] = message_type
|
|
except:
|
|
...
|
|
|
|
ret = OpenAIChatOutput(
|
|
id=f"chat{uuid.uuid4()}",
|
|
object="chat.completion.chunk",
|
|
content=data.get("text", ""),
|
|
role="assistant",
|
|
tool_calls=data["tool_calls"],
|
|
model=models["llm_model"].model_name,
|
|
status = data["status"],
|
|
message_type = data["message_type"],
|
|
message_id=message_id,
|
|
)
|
|
yield ret.model_dump_json()
|
|
# yield OpenAIChatOutput( # return blank text lastly
|
|
# id=f"chat{uuid.uuid4()}",
|
|
# object="chat.completion.chunk",
|
|
# content="",
|
|
# role="assistant",
|
|
# model=models["llm_model"].model_name,
|
|
# status = data["status"],
|
|
# message_type = data["message_type"],
|
|
# message_id=message_id,
|
|
# )
|
|
await task
|
|
|
|
if stream:
|
|
return EventSourceResponse(chat_iterator())
|
|
else:
|
|
ret = OpenAIChatOutput(
|
|
id=f"chat{uuid.uuid4()}",
|
|
object="chat.completion",
|
|
content="",
|
|
role="assistant",
|
|
finish_reason="stop",
|
|
tool_calls=[],
|
|
status = AgentStatus.agent_finish,
|
|
message_type = MsgType.TEXT,
|
|
message_id=message_id,
|
|
)
|
|
|
|
async for chunk in chat_iterator():
|
|
data = json.loads(chunk)
|
|
if text := data["choices"][0]["delta"]["content"]:
|
|
ret.content += text
|
|
if data["status"] == AgentStatus.tool_end:
|
|
ret.tool_calls += data["choices"][0]["delta"]["tool_calls"]
|
|
ret.model = data["model"]
|
|
ret.created = data["created"]
|
|
|
|
return ret.model_dump()
|