2024-06-06 11:02:37 +08:00

351 lines
12 KiB
Python

import asyncio
import json
import logging
import multiprocessing as mp
import os
import pprint
import threading
from typing import (
Any,
AsyncGenerator,
Dict,
Generator,
List,
Optional,
Tuple,
Type,
Union,
cast,
)
import tiktoken
import uvicorn
from fastapi import APIRouter, FastAPI, HTTPException, Request, Response, status
from fastapi.middleware.cors import CORSMiddleware
from sse_starlette import EventSourceResponse
from uvicorn import Config, Server
from model_providers.bootstrap_web.entities.model_provider_entities import (
ProviderListResponse,
ProviderModelTypeResponse,
)
from model_providers.bootstrap_web.message_convert import (
convert_to_message,
openai_chat_completion,
openai_embedding_text,
stream_openai_chat_completion,
)
from model_providers.core.bootstrap import OpenAIBootstrapBaseWeb
from model_providers.core.bootstrap.openai_protocol import (
ChatCompletionRequest,
ChatCompletionResponse,
EmbeddingsRequest,
EmbeddingsResponse,
ModelCard,
ModelList,
)
from model_providers.core.bootstrap.providers_wapper import ProvidersWrapper
from model_providers.core.model_runtime.entities.message_entities import (
PromptMessageTool,
)
from model_providers.core.model_runtime.entities.model_entities import (
AIModelEntity,
ModelType,
)
from model_providers.core.model_runtime.errors.invoke import InvokeError
from model_providers.core.utils.generic import dictify
logger = logging.getLogger(__name__)
class RESTFulOpenAIBootstrapBaseWeb(OpenAIBootstrapBaseWeb):
"""
Bootstrap Server Lifecycle
"""
def __init__(self, host: str, port: int):
super().__init__()
self._host = host
self._port = port
self._router = APIRouter()
self._app = FastAPI()
self._logging_conf = None
self._server = None
self._server_thread = None
def logging_conf(self, logging_conf: Optional[dict] = None):
self._logging_conf = logging_conf
@classmethod
def from_config(cls, cfg=None):
host = cfg.get("host", "127.0.0.1")
port = cfg.get("port", 20000)
logger.info(
f"Starting openai Bootstrap Server Lifecycle at endpoint: http://{host}:{port}"
)
return cls(host=host, port=port)
def run(self):
self._app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
self._router.add_api_route(
"/workspaces/current/model-providers",
self.workspaces_model_providers,
response_model=ProviderListResponse,
methods=["GET"],
)
self._router.add_api_route(
"/workspaces/current/models/model-types/{model_type}",
self.workspaces_model_types,
response_model=ProviderModelTypeResponse,
methods=["GET"],
)
self._router.add_api_route(
"/{provider}/v1/models",
self.list_models,
response_model=ModelList,
methods=["GET"],
)
self._router.add_api_route(
"/{provider}/v1/embeddings",
self.create_embeddings,
response_model=EmbeddingsResponse,
status_code=status.HTTP_200_OK,
methods=["POST"],
)
self._router.add_api_route(
"/{provider}/v1/chat/completions",
self.create_chat_completion,
response_model=ChatCompletionResponse,
status_code=status.HTTP_200_OK,
methods=["POST"],
)
self._app.include_router(self._router)
config = Config(
app=self._app,
host=self._host,
port=self._port,
log_config=self._logging_conf,
)
self._server = Server(config)
def run_server():
self._server.shutdown_timeout = 2 # 设置为2秒
self._server.run()
self._server_thread = threading.Thread(target=run_server)
self._server_thread.start()
def destroy(self):
logger.info("Shutting down server")
self._server.should_exit = True # 设置退出标志
self._server.shutdown() # 停止服务器
self.join()
def join(self):
self._server_thread.join()
def set_app_event(self, started_event: mp.Event = None):
@self._app.on_event("startup")
async def on_startup():
if started_event is not None:
started_event.set()
async def workspaces_model_providers(self, request: Request):
provider_list = ProvidersWrapper(
provider_manager=self._provider_manager.provider_manager
).get_provider_list(model_type=request.get("model_type"))
return ProviderListResponse(data=provider_list)
async def workspaces_model_types(self, model_type: str, request: Request):
models_by_model_type = ProvidersWrapper(
provider_manager=self._provider_manager.provider_manager
).get_models_by_model_type(model_type=model_type)
return ProviderModelTypeResponse(data=models_by_model_type)
async def list_models(self, provider: str, request: Request):
logger.info(f"Received list_models request for provider: {provider}")
# 返回ModelType所有的枚举
ai_models: List[AIModelEntity] = []
for model_type in ModelType.__members__.values():
try:
provider_model_bundle_llm = provider_manager.get_provider_model_bundle(
provider="zhipuai", model_type=model_type
)
for model in (
provider_model_bundle_llm.configuration.custom_configuration.models
):
if model.model_type == model_type:
ai_models.append(
provider_model_bundle_llm.model_type_instance.get_model_schema(
model=model.model,
credentials=model.credentials,
)
)
except Exception as e:
logger.warning(
f"Error while fetching models for provider: {provider}, model_type: {model_type}"
)
# 获取预定义模型
ai_models.extend(
provider_model_bundle_llm.model_type_instance.predefined_models()
)
logger.info(f"ai_models: {ai_models}")
# modelsList[AIModelEntity]转换称List[ModelCard]
models_list = [
ModelCard(id=model.model, object=model.model_type.to_origin_model_type())
for model in llm_models
]
return ModelList(data=models_list)
async def create_embeddings(
self, provider: str, request: Request, embeddings_request: EmbeddingsRequest
):
logger.info(
f"Received create_embeddings request: {pprint.pformat(embeddings_request.dict())}"
)
try:
model_instance = self._provider_manager.get_model_instance(
provider=provider,
model_type=ModelType.TEXT_EMBEDDING,
model=embeddings_request.model,
)
# 判断embeddings_request.input是否为list[int]
input = ""
if isinstance(embeddings_request.input, list):
tokens = embeddings_request.input
try:
encoding = tiktoken.encoding_for_model(embeddings_request.model)
except KeyError:
logger.warning(
"Warning: model not found. Using cl100k_base encoding."
)
model = "cl100k_base"
encoding = tiktoken.get_encoding(model)
for i, token in enumerate(tokens):
# 判断是否是int
if isinstance(token, int):
text = encoding.decode(token)
input += text
else:
input += token
else:
input = embeddings_request.input
response = model_instance.invoke_text_embedding(
texts=[input], user="abc-123"
)
return await openai_embedding_text(response)
except ValueError as e:
logger.error(f"Error while creating embeddings: {str(e)}")
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail=str(e))
except InvokeError as e:
logger.error(f"Error while creating embeddings: {str(e)}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail=str(e)
)
async def create_chat_completion(
self, provider: str, request: Request, chat_request: ChatCompletionRequest
):
logger.info(
f"Received chat completion request: {pprint.pformat(chat_request.dict())}"
)
model_instance = self._provider_manager.get_model_instance(
provider=provider, model_type=ModelType.LLM, model=chat_request.model
)
prompt_messages = [
convert_to_message(message) for message in chat_request.messages
]
tools = []
if chat_request.tools:
tools = [
PromptMessageTool(
name=f.function.name,
description=f.function.description,
parameters=f.function.parameters,
)
for f in chat_request.tools
]
if chat_request.functions:
tools.extend(
[
PromptMessageTool(
name=f.name, description=f.description, parameters=f.parameters
)
for f in chat_request.functions
]
)
try:
response = model_instance.invoke_llm(
prompt_messages=prompt_messages,
model_parameters={**chat_request.to_model_parameters_dict()},
tools=tools,
stop=chat_request.stop,
stream=chat_request.stream,
user="abc-123",
)
if chat_request.stream:
return EventSourceResponse(
stream_openai_chat_completion(response),
media_type="text/event-stream",
)
else:
return await openai_chat_completion(response)
except ValueError as e:
logger.error(f"Error while creating chat completion: {str(e)}")
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail=str(e))
except InvokeError as e:
logger.error(f"Error while creating chat completion: {str(e)}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail=str(e)
)
def run(
cfg: Dict,
logging_conf: Optional[dict] = None,
started_event: mp.Event = None,
):
logging.config.dictConfig(logging_conf) # type: ignore
try:
api = RESTFulOpenAIBootstrapBaseWeb.from_config(
cfg=cfg.get("run_openai_api", {})
)
api.set_app_event(started_event=started_event)
api.logging_conf(logging_conf=logging_conf)
api.run()
async def pool_join_thread():
api.join()
asyncio.run(pool_join_thread())
except SystemExit:
logger.info("SystemExit raised, exiting")
raise