mirror of
https://github.com/RYDE-WORK/Langchain-Chatchat.git
synced 2026-01-30 02:35:29 +08:00
38 lines
1.1 KiB
Python
38 lines
1.1 KiB
Python
from langchain.chains import LLMChain
|
|
from langchain_core.prompts import PromptTemplate
|
|
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
|
|
import pytest
|
|
import logging
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
@pytest.mark.requires("xinference_client")
|
|
def test_llm(init_server: str):
|
|
llm = ChatOpenAI(
|
|
|
|
model_name="glm-4",
|
|
openai_api_key="YOUR_API_KEY", openai_api_base=f"{init_server}/xinference/v1")
|
|
template = """Question: {question}
|
|
|
|
Answer: Let's think step by step."""
|
|
|
|
prompt = PromptTemplate.from_template(template)
|
|
|
|
llm_chain = LLMChain(prompt=prompt, llm=llm)
|
|
responses = llm_chain.run("你好")
|
|
logger.info("\033[1;32m" + f"llm_chain: {responses}" + "\033[0m")
|
|
|
|
|
|
@pytest.mark.requires("xinference-client")
|
|
def test_embedding(init_server: str):
|
|
embeddings = OpenAIEmbeddings(model="text_embedding",
|
|
openai_api_key="YOUR_API_KEY",
|
|
openai_api_base=f"{init_server}/xinference/v1")
|
|
|
|
text = "你好"
|
|
|
|
query_result = embeddings.embed_query(text)
|
|
|
|
logger.info("\033[1;32m" + f"embeddings: {query_result}" + "\033[0m")
|