import asyncio import json import logging import multiprocessing as mp import os import pprint import threading from typing import Any, Dict, Optional import tiktoken from fastapi import APIRouter, FastAPI, HTTPException, Request, Response, status from fastapi.middleware.cors import CORSMiddleware from sse_starlette import EventSourceResponse from uvicorn import Config, Server from model_providers.core.bootstrap import OpenAIBootstrapBaseWeb from model_providers.core.bootstrap.openai_protocol import ( ChatCompletionRequest, ChatCompletionResponse, ChatCompletionStreamResponse, EmbeddingsRequest, EmbeddingsResponse, FunctionAvailable, ModelList, ModelCard, ) from model_providers.core.model_manager import ModelManager, ModelInstance from model_providers.core.model_runtime.entities.message_entities import ( UserPromptMessage, ) from model_providers.core.model_runtime.entities.model_entities import ModelType, AIModelEntity from model_providers.core.utils.generic import dictify, jsonify logger = logging.getLogger(__name__) class RESTFulOpenAIBootstrapBaseWeb(OpenAIBootstrapBaseWeb): """ Bootstrap Server Lifecycle """ def __init__(self, host: str, port: int): super().__init__() self._host = host self._port = port self._router = APIRouter() self._app = FastAPI() self._server_thread = None @classmethod def from_config(cls, cfg=None): host = cfg.get("host", "127.0.0.1") port = cfg.get("port", 20000) logger.info( f"Starting openai Bootstrap Server Lifecycle at endpoint: http://{host}:{port}" ) return cls(host=host, port=port) def serve(self, logging_conf: Optional[dict] = None): self._app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) self._router.add_api_route( "/{provider}/v1/models", self.list_models, response_model=ModelList, methods=["GET"], ) self._router.add_api_route( "/{provider}/v1/embeddings", self.create_embeddings, response_model=EmbeddingsResponse, status_code=status.HTTP_200_OK, methods=["POST"], ) self._router.add_api_route( "/{provider}/v1/chat/completions", self.create_chat_completion, response_model=ChatCompletionResponse, status_code=status.HTTP_200_OK, methods=["POST"], ) self._app.include_router(self._router) config = Config( app=self._app, host=self._host, port=self._port, log_config=logging_conf ) server = Server(config) def run_server(): server.run() self._server_thread = threading.Thread(target=run_server) self._server_thread.start() async def join(self): await self._server_thread.join() def set_app_event(self, started_event: mp.Event = None): @self._app.on_event("startup") async def on_startup(): if started_event is not None: started_event.set() async def list_models(self, provider: str, request: Request): logger.info(f"Received list_models request for provider: {provider}") # 返回ModelType所有的枚举 llm_models: list[AIModelEntity] = [] for model_type in ModelType.__members__.values(): try: provider_model_bundle = self._provider_manager.provider_manager.get_provider_model_bundle( provider=provider, model_type=model_type ) llm_models.extend(provider_model_bundle.model_type_instance.predefined_models()) except Exception as e: logger.error(f"Error while fetching models for provider: {provider}, model_type: {model_type}") logger.error(e) # models list[AIModelEntity]转换称List[ModelCard] models_list = [ModelCard(id=model.model, object=model.model_type.to_origin_model_type()) for model in llm_models] return ModelList( data=models_list ) async def create_embeddings( self, provider: str, request: Request, embeddings_request: EmbeddingsRequest ): logger.info( f"Received create_embeddings request: {pprint.pformat(embeddings_request.dict())}" ) response = None return EmbeddingsResponse(**dictify(response)) async def create_chat_completion( self, provider: str, request: Request, chat_request: ChatCompletionRequest ): logger.info( f"Received chat completion request: {pprint.pformat(chat_request.dict())}" ) model_instance = self._provider_manager.get_model_instance( provider=provider, model_type=ModelType.LLM, model=chat_request.model ) if chat_request.stream: # Invoke model response = model_instance.invoke_llm( prompt_messages=[UserPromptMessage(content="北京今天的天气怎么样")], model_parameters={**chat_request.to_model_parameters_dict()}, stop=chat_request.stop, stream=chat_request.stream, user="abc-123", ) return EventSourceResponse(response, media_type="text/event-stream") else: # Invoke model response = model_instance.invoke_llm( prompt_messages=[UserPromptMessage(content="北京今天的天气怎么样")], model_parameters={**chat_request.to_model_parameters_dict()}, stop=chat_request.stop, stream=chat_request.stream, user="abc-123", ) chat_response = ChatCompletionResponse(**dictify(response)) return chat_response def run( cfg: Dict, logging_conf: Optional[dict] = None, started_event: mp.Event = None, ): logging.config.dictConfig(logging_conf) # type: ignore try: api = RESTFulOpenAIBootstrapBaseWeb.from_config( cfg=cfg.get("run_openai_api", {}) ) api.set_app_event(started_event=started_event) api.serve(logging_conf=logging_conf) async def pool_join_thread(): await api.join() asyncio.run(pool_join_thread()) except SystemExit: logger.info("SystemExit raised, exiting") raise