from contextlib import contextmanager import httpx from fastchat.conversation import Conversation from httpx_sse import EventSource from server.model_workers.base import * from fastchat import conversation as conv import sys from typing import List, Dict, Iterator, Literal, Any import jwt import time @contextmanager def connect_sse(client: httpx.Client, method: str, url: str, **kwargs: Any): with client.stream(method, url, **kwargs) as response: yield EventSource(response) def generate_token(apikey: str, exp_seconds: int): try: id, secret = apikey.split(".") except Exception as e: raise Exception("invalid apikey", e) payload = { "api_key": id, "exp": int(round(time.time() * 1000)) + exp_seconds * 1000, "timestamp": int(round(time.time() * 1000)), } return jwt.encode( payload, secret, algorithm="HS256", headers={"alg": "HS256", "sign_type": "SIGN"}, ) class ChatGLMWorker(ApiModelWorker): def __init__( self, *, model_names: List[str] = ["zhipu-api"], controller_addr: str = None, worker_addr: str = None, version: Literal["glm-4"] = "glm-4", **kwargs, ): kwargs.update(model_names=model_names, controller_addr=controller_addr, worker_addr=worker_addr) kwargs.setdefault("context_len", 4096) super().__init__(**kwargs) self.version = version def do_chat(self, params: ApiChatParams) -> Iterator[Dict]: params.load_config(self.model_names[0]) token = generate_token(params.api_key, 60) headers = { "Content-Type": "application/json", "Authorization": f"Bearer {token}" } data = { "model": params.version, "messages": params.messages, "max_tokens": params.max_tokens, "temperature": params.temperature, "stream": False } url = "https://open.bigmodel.cn/api/paas/v4/chat/completions" with httpx.Client(headers=headers) as client: response = client.post(url, json=data) response.raise_for_status() chunk = response.json() print(chunk) yield {"error_code": 0, "text": chunk["choices"][0]["message"]["content"]} # with connect_sse(client, "POST", url, json=data) as event_source: # for sse in event_source.iter_sse(): # chunk = json.loads(sse.data) # if len(chunk["choices"]) != 0: # text += chunk["choices"][0]["delta"]["content"] # yield {"error_code": 0, "text": text} def get_embeddings(self, params): print("embedding") print(params) def make_conv_template(self, conv_template: str = None, model_path: str = None) -> Conversation: return conv.Conversation( name=self.model_names[0], system_message="你是智谱AI小助手,请根据用户的提示来完成任务", messages=[], roles=["user", "assistant", "system"], sep="\n###", stop_str="###", ) if __name__ == "__main__": import uvicorn from server.utils import MakeFastAPIOffline from fastchat.serve.model_worker import app worker = ChatGLMWorker( controller_addr="http://127.0.0.1:20001", worker_addr="http://127.0.0.1:21001", ) sys.modules["fastchat.serve.model_worker"].worker = worker MakeFastAPIOffline(app) uvicorn.run(app, port=21001)