from pathlib import Path from chatchat.configs import ( ConfigBasicFactory, ConfigBasic, ConfigBasicWorkSpace, ConfigModelWorkSpace, ConfigModel, ConfigServerWorkSpace, ConfigServer, ConfigKbWorkSpace, ConfigKb, ) import os def test_config_basic_workspace(): config_basic_workspace: ConfigBasicWorkSpace = ConfigBasicWorkSpace() assert config_basic_workspace.get_config() is not None base_root = os.path.join(Path(__file__).absolute().parent, "chatchat") config_basic_workspace.set_data_path(os.path.join(base_root, "data")) config_basic_workspace.set_log_verbose(True) config_basic_workspace.set_log_format(" %(message)s") config: ConfigBasic = config_basic_workspace.get_config() assert config.log_verbose is True assert config.DATA_PATH == os.path.join(base_root, "data") assert config.IMG_DIR is not None assert config.NLTK_DATA_PATH == os.path.join(base_root, "data", "nltk_data") assert config.LOG_FORMAT == " %(message)s" assert config.LOG_PATH == os.path.join(base_root, "data", "logs") assert config.MEDIA_PATH == os.path.join(base_root, "data", "media") assert os.path.exists(os.path.join(config.MEDIA_PATH, "image")) assert os.path.exists(os.path.join(config.MEDIA_PATH, "audio")) assert os.path.exists(os.path.join(config.MEDIA_PATH, "video")) config_basic_workspace.clear() def test_workspace_default(): from chatchat.configs import (log_verbose, DATA_PATH, IMG_DIR, NLTK_DATA_PATH, LOG_FORMAT, LOG_PATH, MEDIA_PATH) assert log_verbose is False assert DATA_PATH is not None assert IMG_DIR is not None assert NLTK_DATA_PATH is not None assert LOG_FORMAT is not None assert LOG_PATH is not None assert MEDIA_PATH is not None def test_config_model_workspace(): config_model_workspace: ConfigModelWorkSpace = ConfigModelWorkSpace() assert config_model_workspace.get_config() is not None config_model_workspace.set_default_llm_model(llm_model="glm4") config_model_workspace.set_default_embedding_model(embedding_model="text1") config_model_workspace.set_agent_model(agent_model="agent") config_model_workspace.set_history_len(history_len=1) config_model_workspace.set_max_tokens(max_tokens=1000) config_model_workspace.set_temperature(temperature=0.1) config_model_workspace.set_support_agent_models(support_agent_models=["glm4"]) config_model_workspace.set_model_providers_cfg_path_config(model_providers_cfg_path_config="model_providers.yaml") config_model_workspace.set_model_providers_cfg_host(model_providers_cfg_host="127.0.0.1") config_model_workspace.set_model_providers_cfg_port(model_providers_cfg_port=8000) config: ConfigModel = config_model_workspace.get_config() assert config.DEFAULT_LLM_MODEL == "glm4" assert config.DEFAULT_EMBEDDING_MODEL == "text1" assert config.Agent_MODEL == "agent" assert config.HISTORY_LEN == 1 assert config.MAX_TOKENS == 1000 assert config.TEMPERATURE == 0.1 assert config.SUPPORT_AGENT_MODELS == ["glm4"] assert config.MODEL_PROVIDERS_CFG_PATH_CONFIG == "model_providers.yaml" assert config.MODEL_PROVIDERS_CFG_HOST == "127.0.0.1" assert config.MODEL_PROVIDERS_CFG_PORT == 8000 config_model_workspace.clear() def test_model_config(): from chatchat.configs import ( DEFAULT_LLM_MODEL, DEFAULT_EMBEDDING_MODEL, Agent_MODEL, HISTORY_LEN, MAX_TOKENS, TEMPERATURE, SUPPORT_AGENT_MODELS, MODEL_PROVIDERS_CFG_PATH_CONFIG, MODEL_PROVIDERS_CFG_HOST, MODEL_PROVIDERS_CFG_PORT, TOOL_CONFIG, MODEL_PLATFORMS, LLM_MODEL_CONFIG ) assert DEFAULT_LLM_MODEL is not None assert DEFAULT_EMBEDDING_MODEL is not None assert Agent_MODEL is None assert HISTORY_LEN is not None assert MAX_TOKENS is None assert TEMPERATURE is not None assert SUPPORT_AGENT_MODELS is not None assert MODEL_PROVIDERS_CFG_PATH_CONFIG is not None assert MODEL_PROVIDERS_CFG_HOST is not None assert MODEL_PROVIDERS_CFG_PORT is not None assert TOOL_CONFIG is not None assert MODEL_PLATFORMS is not None assert LLM_MODEL_CONFIG is not None def test_config_server_workspace(): config_server_workspace: ConfigServerWorkSpace = ConfigServerWorkSpace() assert config_server_workspace.get_config() is not None config_server_workspace.set_httpx_default_timeout(timeout=10) config_server_workspace.set_open_cross_domain(open_cross_domain=True) config_server_workspace.set_default_bind_host(default_bind_host="0.0.0.0") config_server_workspace.set_webui_server_port(webui_server_port=8000) config_server_workspace.set_api_server_port(api_server_port=8001) config: ConfigServer = config_server_workspace.get_config() assert config.HTTPX_DEFAULT_TIMEOUT == 10 assert config.OPEN_CROSS_DOMAIN is True assert config.DEFAULT_BIND_HOST == "0.0.0.0" assert config.WEBUI_SERVER_PORT == 8000 assert config.API_SERVER_PORT == 8001 config_server_workspace.clear() def test_server_config(): from chatchat.configs import ( HTTPX_DEFAULT_TIMEOUT, OPEN_CROSS_DOMAIN, DEFAULT_BIND_HOST, WEBUI_SERVER, API_SERVER ) assert HTTPX_DEFAULT_TIMEOUT is not None assert OPEN_CROSS_DOMAIN is not None assert DEFAULT_BIND_HOST is not None assert WEBUI_SERVER is not None assert API_SERVER is not None def test_config_kb_workspace(): config_kb_workspace: ConfigKbWorkSpace = ConfigKbWorkSpace() assert config_kb_workspace.get_config() is not None config_kb_workspace.set_default_knowledge_base(kb_name="test") config_kb_workspace.set_default_vs_type(vs_type="tes") config_kb_workspace.set_cached_vs_num(cached_vs_num=10) config_kb_workspace.set_cached_memo_vs_num(cached_memo_vs_num=10) config_kb_workspace.set_chunk_size(chunk_size=10) config_kb_workspace.set_overlap_size(overlap_size=10) config_kb_workspace.set_vector_search_top_k(vector_search_top_k=10) config_kb_workspace.set_score_threshold(score_threshold=0.1) config_kb_workspace.set_default_search_engine(default_search_engine="test") config_kb_workspace.set_search_engine_top_k(search_engine_top_k=10) config_kb_workspace.set_zh_title_enhance(zh_title_enhance=True) config_kb_workspace.set_pdf_ocr_threshold(pdf_ocr_threshold=(0.1, 0.2)) config_kb_workspace.set_kb_info(kb_info={ "samples": "关于本项目issue的解答", }) config_kb_workspace.set_kb_root_path(kb_root_path="test") config_kb_workspace.set_db_root_path(db_root_path="test") config_kb_workspace.set_sqlalchemy_database_uri(sqlalchemy_database_uri="test") config_kb_workspace.set_text_splitter_name(text_splitter_name="test") config_kb_workspace.set_embedding_keyword_file(embedding_keyword_file="test") config: ConfigKb = config_kb_workspace.get_config() assert config.DEFAULT_KNOWLEDGE_BASE == "test" assert config.DEFAULT_VS_TYPE == "tes" assert config.CACHED_VS_NUM == 10 assert config.CACHED_MEMO_VS_NUM == 10 assert config.CHUNK_SIZE == 10 assert config.OVERLAP_SIZE == 10 assert config.VECTOR_SEARCH_TOP_K == 10 assert config.SCORE_THRESHOLD == 0.1 assert config.DEFAULT_SEARCH_ENGINE == "test" assert config.SEARCH_ENGINE_TOP_K == 10 assert config.ZH_TITLE_ENHANCE is True assert config.PDF_OCR_THRESHOLD == (0.1, 0.2) assert config.KB_INFO == { "samples": "关于本项目issue的解答", } assert config.KB_ROOT_PATH == "test" assert config.DB_ROOT_PATH == "test" assert config.SQLALCHEMY_DATABASE_URI == "test" assert config.TEXT_SPLITTER_NAME == "test" assert config.EMBEDDING_KEYWORD_FILE == "test" config_kb_workspace.clear()