import os # 默认选用的 LLM 名称 DEFAULT_LLM_MODEL = "chatglm3-6b" # 默认选用的 Embedding 名称 DEFAULT_EMBEDDING_MODEL = "bge-large-zh-v1.5" # AgentLM模型的名称 (可以不指定,指定之后就锁定进入Agent之后的Chain的模型,不指定就是LLM_MODELS[0]) Agent_MODEL = None # 历史对话轮数 HISTORY_LEN = 3 # 大模型最长支持的长度,如果不填写,则使用模型默认的最大长度,如果填写,则为用户设定的最大长度 MAX_TOKENS = None # LLM通用对话参数 TEMPERATURE = 0.7 # TOP_P = 0.95 # ChatOpenAI暂不支持该参数 SUPPORT_AGENT_MODELS = [ "chatglm3-6b", "openai-api", "Qwen-14B-Chat", "Qwen-7B-Chat", ] LLM_MODEL_CONFIG = { # 意图识别不需要输出,模型后台知道就行 "preprocess_model": { DEFAULT_LLM_MODEL: { "temperature": 0.05, "max_tokens": 4096, "history_len": 100, "prompt_name": "default", "callbacks": False }, }, "llm_model": { DEFAULT_LLM_MODEL: { "temperature": 0.9, "max_tokens": 4096, "history_len": 10, "prompt_name": "default", "callbacks": True }, }, "action_model": { DEFAULT_LLM_MODEL: { "temperature": 0.01, "max_tokens": 4096, "prompt_name": "ChatGLM3", "callbacks": True }, }, "postprocess_model": { DEFAULT_LLM_MODEL: { "temperature": 0.01, "max_tokens": 4096, "prompt_name": "default", "callbacks": True } }, "image_model": { "sd-turbo": { "size": "256*256", } }, "multimodal_model": { "qwen-vl": {} }, } # 可以通过 loom/xinference/oneapi/fatchat 启动模型服务,然后将其 URL 和 KEY 配置过来即可。 MODEL_PLATFORMS = [ { "platform_name": "openai-api", "platform_type": "openai", "llm_models": [ "gpt-3.5-turbo", ], "api_base_url": "https://api.openai.com/v1", "api_key": "sk-", "api_proxy": "", }, { "platform_name": "xinference", "platform_type": "xinference", "llm_models": [ "chatglm3-6b", ], "embed_models": [ "bge-large-zh-v1.5", ], "image_models": [ "sd-turbo", ], "multimodal_models": [ "qwen-vl", ], "api_base_url": "http://127.0.0.1:9997/v1", "api_key": "EMPTY", }, { "platform_name": "oneapi", "platform_type": "oneapi", "api_key": "", "llm_models": [ "chatglm3-6b", ], }, { "platform_name": "loom", "platform_type": "loom", "api_key": "", "llm_models": [ "chatglm3-6b", ], }, ] LOOM_CONFIG = os.path.join(os.path.dirname(os.path.abspath(__file__)), "loom.yaml")