import os # 默认选用的 LLM 名称 DEFAULT_LLM_MODEL = "chatglm3-6b" # 默认选用的 Embedding 名称 DEFAULT_EMBEDDING_MODEL = "bge-large-zh-v1.5" # AgentLM模型的名称 (可以不指定,指定之后就锁定进入Agent之后的Chain的模型,不指定就是LLM_MODELS[0]) Agent_MODEL = None # 历史对话轮数 HISTORY_LEN = 3 # 大模型最长支持的长度,如果不填写,则使用模型默认的最大长度,如果填写,则为用户设定的最大长度 MAX_TOKENS = None # LLM通用对话参数 TEMPERATURE = 0.7 # TOP_P = 0.95 # ChatOpenAI暂不支持该参数 SUPPORT_AGENT_MODELS = [ "chatglm3-6b", "openai-api", "Qwen-14B-Chat", "Qwen-7B-Chat", "qwen-turbo", ] LLM_MODEL_CONFIG = { # 意图识别不需要输出,模型后台知道就行 "preprocess_model": { DEFAULT_LLM_MODEL: { "temperature": 0.05, "max_tokens": 4096, "history_len": 100, "prompt_name": "default", "callbacks": False }, }, "llm_model": { DEFAULT_LLM_MODEL: { "temperature": 0.9, "max_tokens": 4096, "history_len": 10, "prompt_name": "default", "callbacks": True }, }, "action_model": { DEFAULT_LLM_MODEL: { "temperature": 0.01, "max_tokens": 4096, "prompt_name": "ChatGLM3", "callbacks": True }, }, "postprocess_model": { DEFAULT_LLM_MODEL: { "temperature": 0.01, "max_tokens": 4096, "prompt_name": "default", "callbacks": True } }, "image_model": { "sd-turbo": { "size": "256*256", } }, "multimodal_model": { "qwen-vl": {} }, } # 可以通过 loom/xinference/oneapi/fastchat 启动模型服务,然后将其 URL 和 KEY 配置过来即可。 # - platform_name 可以任意填写,不要重复即可 # - platform_type 可选:openai, xinference, oneapi, fastchat。以后可能根据平台类型做一些功能区分 # - 将框架部署的模型填写到对应列表即可。不同框架可以加载同名模型,项目会自动做负载均衡。 MODEL_PLATFORMS = [ # { # "platform_name": "openai-api", # "platform_type": "openai", # "api_base_url": "https://api.openai.com/v1", # "api_key": "sk-", # "api_proxy": "", # "api_concurrencies": 5, # "llm_models": [ # "gpt-3.5-turbo", # ], # "embed_models": [], # "image_models": [], # "multimodal_models": [], # }, { "platform_name": "xinference", "platform_type": "xinference", "api_base_url": "http://127.0.0.1:9997/v1", "api_key": "EMPTY", "api_concurrencies": 5, # 注意:这里填写的是 xinference 部署的模型 UID,而非模型名称 "llm_models": [ "chatglm3-6b", ], "embed_models": [ "bge-large-zh-v1.5", ], "image_models": [ "sd-turbo", ], "multimodal_models": [ "qwen-vl", ], }, { "platform_name": "oneapi", "platform_type": "oneapi", "api_base_url": "http://127.0.0.1:3000/v1", "api_key": "sk-", "api_concurrencies": 5, "llm_models": [ # 智谱 API "chatglm_pro", "chatglm_turbo", "chatglm_std", "chatglm_lite", # 千问 API "qwen-turbo", "qwen-plus", "qwen-max", "qwen-max-longcontext", # 千帆 API "ERNIE-Bot", "ERNIE-Bot-turbo", "ERNIE-Bot-4", # 星火 API "SparkDesk", ], "embed_models": [ # 千问 API "text-embedding-v1", # 千帆 API "Embedding-V1", ], "image_models": [], "multimodal_models": [], }, # { # "platform_name": "loom", # "platform_type": "loom", # "api_base_url": "http://127.0.0.1:7860/v1", # "api_key": "", # "api_concurrencies": 5, # "llm_models": [ # "chatglm3-6b", # ], # "embed_models": [], # "image_models": [], # "multimodal_models": [], # }, ] LOOM_CONFIG = os.path.join(os.path.dirname(os.path.abspath(__file__)), "loom.yaml")