使用click增加配置中心子命令 (#4164)

使用click增加配置中心子命令
新增 ConfigModelWorkSpace
This commit is contained in:
glide-the 2024-06-11 15:14:58 +08:00 committed by GitHub
parent 117bc9c3e8
commit e7a5d6a528
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
7 changed files with 678 additions and 323 deletions

View File

@ -1,52 +1,88 @@
from chatchat.configs import config_basic_workspace as workspace
from chatchat.configs import (
config_basic_workspace,
config_model_workspace,
)
# We cannot lazy-load click here because its used via decorators.
import click
@click.group(help="指令` chatchat-config` 工作空间配置")
def main():
import argparse
pass
parser = argparse.ArgumentParser(description="指令` chatchat-config` 工作空间配置")
# 只能选择true或false
parser.add_argument(
"-v",
"--verbose",
choices=["true", "false"],
help="是否开启详细日志"
)
parser.add_argument(
"-d",
"--data",
help="数据存放路径"
)
parser.add_argument(
"-f",
"--format",
help="日志格式"
)
parser.add_argument(
"--clear",
action="store_true",
help="清除配置"
)
parser.add_argument(
"--show",
action="store_true",
help="显示配置"
)
args = parser.parse_args()
if args.verbose:
if args.verbose.lower() == "true":
workspace.set_log_verbose(True)
@main.command("basic", help="基础配置")
@click.option("--verbose", type=click.Choice(["true", "false"]), help="是否开启详细日志")
@click.option("--data", help="数据存放路径")
@click.option("--format", help="日志格式")
@click.option("--clear", is_flag=True, help="清除配置")
@click.option("--show", is_flag=True, help="显示配置")
def basic(**kwargs):
if kwargs["verbose"]:
if kwargs["verbose"].lower() == "true":
config_basic_workspace.set_log_verbose(True)
else:
workspace.set_log_verbose(False)
if args.data:
workspace.set_data_path(args.data)
if args.format:
workspace.set_log_format(args.format)
if args.clear:
workspace.clear()
if args.show:
print(workspace.get_config())
config_basic_workspace.set_log_verbose(False)
if kwargs["data"]:
config_basic_workspace.set_data_path(kwargs["data"])
if kwargs["format"]:
config_basic_workspace.set_log_format(kwargs["format"])
if kwargs["clear"]:
config_basic_workspace.clear()
if kwargs["show"]:
print(config_basic_workspace.get_config())
@main.command("model", help="模型配置")
@click.option("--default_llm_model", help="默认llm模型")
@click.option("--default_embedding_model", help="默认embedding模型")
@click.option("--agent_model", help="agent模型")
@click.option("--history_len", type=int, help="历史长度")
@click.option("--max_tokens", type=int, help="最大tokens")
@click.option("--temperature", type=float, help="温度")
@click.option("--support_agent_models", multiple=True, help="支持的agent模型")
@click.option("--model_providers_cfg_path_config", help="模型平台配置文件路径")
@click.option("--model_providers_cfg_host", help="模型平台配置服务host")
@click.option("--model_providers_cfg_port", type=int, help="模型平台配置服务port")
@click.option("--clear", is_flag=True, help="清除配置")
@click.option("--show", is_flag=True, help="显示配置")
def model(**kwargs):
if kwargs["default_llm_model"]:
config_model_workspace.set_default_llm_model(llm_model=kwargs["default_llm_model"])
if kwargs["default_embedding_model"]:
config_model_workspace.set_default_embedding_model(embedding_model=kwargs["default_embedding_model"])
if kwargs["agent_model"]:
config_model_workspace.set_agent_model(agent_model=kwargs["agent_model"])
if kwargs["history_len"]:
config_model_workspace.set_history_len(history_len=kwargs["history_len"])
if kwargs["max_tokens"]:
config_model_workspace.set_max_tokens(max_tokens=kwargs["max_tokens"])
if kwargs["temperature"]:
config_model_workspace.set_temperature(temperature=kwargs["temperature"])
if kwargs["support_agent_models"]:
config_model_workspace.set_support_agent_models(support_agent_models=kwargs["support_agent_models"])
if kwargs["model_providers_cfg_path_config"]:
config_model_workspace.set_model_providers_cfg_path_config(model_providers_cfg_path_config=kwargs["model_providers_cfg_path_config"])
if kwargs["model_providers_cfg_host"]:
config_model_workspace.set_model_providers_cfg_host(model_providers_cfg_host=kwargs["model_providers_cfg_host"])
if kwargs["model_providers_cfg_port"]:
config_model_workspace.set_model_providers_cfg_port(model_providers_cfg_port=kwargs["model_providers_cfg_port"])
if kwargs["clear"]:
config_model_workspace.clear()
if kwargs["show"]:
print(config_model_workspace.get_config())
if __name__ == "__main__":

View File

@ -363,108 +363,140 @@ def _import_embedding_keyword_file() -> Any:
return EMBEDDING_KEYWORD_FILE
def _import_ConfigModel() -> Any:
basic_config_load = CONFIG_IMPORTS.get("_model_config.py")
load_mod = basic_config_load.get("load_mod")
ConfigModel = load_mod(basic_config_load.get("module"), "ConfigModel")
return ConfigModel
def _import_ConfigModelFactory() -> Any:
basic_config_load = CONFIG_IMPORTS.get("_model_config.py")
load_mod = basic_config_load.get("load_mod")
ConfigModelFactory = load_mod(basic_config_load.get("module"), "ConfigModelFactory")
return ConfigModelFactory
def _import_ConfigModelWorkSpace() -> Any:
basic_config_load = CONFIG_IMPORTS.get("_model_config.py")
load_mod = basic_config_load.get("load_mod")
ConfigModelWorkSpace = load_mod(basic_config_load.get("module"), "ConfigModelWorkSpace")
return ConfigModelWorkSpace
def _import_config_model_workspace() -> Any:
model_config_load = CONFIG_IMPORTS.get("_model_config.py")
load_mod = model_config_load.get("load_mod")
config_model_workspace = load_mod(model_config_load.get("module"), "config_model_workspace")
return config_model_workspace
def _import_default_llm_model() -> Any:
model_config_load = CONFIG_IMPORTS.get("_model_config.py")
load_mod = model_config_load.get("load_mod")
DEFAULT_LLM_MODEL = load_mod(model_config_load.get("module"), "DEFAULT_LLM_MODEL")
config_model_workspace = load_mod(model_config_load.get("module"), "config_model_workspace")
return DEFAULT_LLM_MODEL
return config_model_workspace.get_config().DEFAULT_LLM_MODEL
def _import_default_embedding_model() -> Any:
model_config_load = CONFIG_IMPORTS.get("_model_config.py")
load_mod = model_config_load.get("load_mod")
DEFAULT_EMBEDDING_MODEL = load_mod(model_config_load.get("module"), "DEFAULT_EMBEDDING_MODEL")
return DEFAULT_EMBEDDING_MODEL
config_model_workspace = load_mod(model_config_load.get("module"), "config_model_workspace")
return config_model_workspace.get_config().DEFAULT_EMBEDDING_MODEL
def _import_agent_model() -> Any:
model_config_load = CONFIG_IMPORTS.get("_model_config.py")
load_mod = model_config_load.get("load_mod")
Agent_MODEL = load_mod(model_config_load.get("module"), "Agent_MODEL")
config_model_workspace = load_mod(model_config_load.get("module"), "config_model_workspace")
return Agent_MODEL
return config_model_workspace.get_config().Agent_MODEL
def _import_history_len() -> Any:
model_config_load = CONFIG_IMPORTS.get("_model_config.py")
load_mod = model_config_load.get("load_mod")
HISTORY_LEN = load_mod(model_config_load.get("module"), "HISTORY_LEN")
config_model_workspace = load_mod(model_config_load.get("module"), "config_model_workspace")
return HISTORY_LEN
return config_model_workspace.get_config().HISTORY_LEN
def _import_max_tokens() -> Any:
model_config_load = CONFIG_IMPORTS.get("_model_config.py")
load_mod = model_config_load.get("load_mod")
MAX_TOKENS = load_mod(model_config_load.get("module"), "MAX_TOKENS")
config_model_workspace = load_mod(model_config_load.get("module"), "config_model_workspace")
return MAX_TOKENS
return config_model_workspace.get_config().MAX_TOKENS
def _import_temperature() -> Any:
model_config_load = CONFIG_IMPORTS.get("_model_config.py")
load_mod = model_config_load.get("load_mod")
TEMPERATURE = load_mod(model_config_load.get("module"), "TEMPERATURE")
config_model_workspace = load_mod(model_config_load.get("module"), "config_model_workspace")
return TEMPERATURE
return config_model_workspace.get_config().TEMPERATURE
def _import_support_agent_models() -> Any:
model_config_load = CONFIG_IMPORTS.get("_model_config.py")
load_mod = model_config_load.get("load_mod")
SUPPORT_AGENT_MODELS = load_mod(model_config_load.get("module"), "SUPPORT_AGENT_MODELS")
config_model_workspace = load_mod(model_config_load.get("module"), "config_model_workspace")
return SUPPORT_AGENT_MODELS
return config_model_workspace.get_config().SUPPORT_AGENT_MODELS
def _import_llm_model_config() -> Any:
model_config_load = CONFIG_IMPORTS.get("_model_config.py")
load_mod = model_config_load.get("load_mod")
LLM_MODEL_CONFIG = load_mod(model_config_load.get("module"), "LLM_MODEL_CONFIG")
config_model_workspace = load_mod(model_config_load.get("module"), "config_model_workspace")
return LLM_MODEL_CONFIG
return config_model_workspace.get_config().LLM_MODEL_CONFIG
def _import_model_platforms() -> Any:
model_config_load = CONFIG_IMPORTS.get("_model_config.py")
load_mod = model_config_load.get("load_mod")
MODEL_PLATFORMS = load_mod(model_config_load.get("module"), "MODEL_PLATFORMS")
config_model_workspace = load_mod(model_config_load.get("module"), "config_model_workspace")
return MODEL_PLATFORMS
return config_model_workspace.get_config().MODEL_PLATFORMS
def _import_model_providers_cfg_path() -> Any:
model_config_load = CONFIG_IMPORTS.get("_model_config.py")
load_mod = model_config_load.get("load_mod")
MODEL_PROVIDERS_CFG_PATH_CONFIG = load_mod(model_config_load.get("module"), "MODEL_PROVIDERS_CFG_PATH_CONFIG")
config_model_workspace = load_mod(model_config_load.get("module"), "config_model_workspace")
return MODEL_PROVIDERS_CFG_PATH_CONFIG
return config_model_workspace.get_config().MODEL_PROVIDERS_CFG_PATH_CONFIG
def _import_model_providers_cfg_host() -> Any:
model_config_load = CONFIG_IMPORTS.get("_model_config.py")
load_mod = model_config_load.get("load_mod")
MODEL_PROVIDERS_CFG_HOST = load_mod(model_config_load.get("module"), "MODEL_PROVIDERS_CFG_HOST")
config_model_workspace = load_mod(model_config_load.get("module"), "config_model_workspace")
return MODEL_PROVIDERS_CFG_HOST
return config_model_workspace.get_config().MODEL_PROVIDERS_CFG_HOST
def _import_model_providers_cfg_port() -> Any:
model_config_load = CONFIG_IMPORTS.get("_model_config.py")
load_mod = model_config_load.get("load_mod")
MODEL_PROVIDERS_CFG_PORT = load_mod(model_config_load.get("module"), "MODEL_PROVIDERS_CFG_PORT")
config_model_workspace = load_mod(model_config_load.get("module"), "config_model_workspace")
return MODEL_PROVIDERS_CFG_PORT
return config_model_workspace.get_config().MODEL_PROVIDERS_CFG_PORT
def _import_tool_config() -> Any:
model_config_load = CONFIG_IMPORTS.get("_model_config.py")
load_mod = model_config_load.get("load_mod")
TOOL_CONFIG = load_mod(model_config_load.get("module"), "TOOL_CONFIG")
config_model_workspace = load_mod(model_config_load.get("module"), "config_model_workspace")
return TOOL_CONFIG
return config_model_workspace.get_config().TOOL_CONFIG
def _import_prompt_templates() -> Any:
@ -524,6 +556,14 @@ def __getattr__(name: str) -> Any:
return _import_ConfigBasicWorkSpace()
elif name == "config_basic_workspace":
return _import_config_basic_workspace()
elif name == "ConfigModel":
return _import_ConfigModel()
elif name == "ConfigModelFactory":
return _import_ConfigModelFactory()
elif name == "ConfigModelWorkSpace":
return _import_ConfigModelWorkSpace()
elif name == "config_model_workspace":
return _import_config_model_workspace()
elif name == "log_verbose":
return _import_log_verbose()
elif name == "CHATCHAT_ROOT":
@ -624,7 +664,6 @@ VERSION = "v0.3.0-preview"
__all__ = [
"VERSION",
"config_basic_workspace",
"log_verbose",
"CHATCHAT_ROOT",
"DATA_PATH",
@ -677,4 +716,12 @@ __all__ = [
"ConfigBasicFactory",
"ConfigBasicWorkSpace",
"config_basic_workspace",
"ConfigModel",
"ConfigModelFactory",
"ConfigModelWorkSpace",
"config_model_workspace",
]

View File

@ -6,7 +6,6 @@ import sys
import logging
from typing import Any, Optional
from chatchat.configs._core_config import CF
sys.path.append(str(Path(__file__).parent))
import _core_config as core_config
@ -128,6 +127,9 @@ class ConfigBasicWorkSpace(core_config.ConfigWorkSpace[ConfigBasicFactory, Confi
"""
config_factory_cls = ConfigBasicFactory
def __init__(self):
super().__init__()
def _build_config_factory(self, config_json: Any) -> ConfigBasicFactory:
_config_factory = self.config_factory_cls()
@ -145,9 +147,6 @@ class ConfigBasicWorkSpace(core_config.ConfigWorkSpace[ConfigBasicFactory, Confi
def get_type(cls) -> str:
return ConfigBasic.class_name()
def __init__(self):
super().__init__()
def get_config(self) -> ConfigBasic:
return self._config_factory.get_config()
@ -163,9 +162,5 @@ class ConfigBasicWorkSpace(core_config.ConfigWorkSpace[ConfigBasicFactory, Confi
self._config_factory.log_format(log_format)
self.store_config()
def clear(self):
logger.info("Clear workspace config.")
os.remove(self.workspace_config)
config_basic_workspace: ConfigBasicWorkSpace = ConfigBasicWorkSpace()

View File

@ -62,15 +62,13 @@ class ConfigWorkSpace(Generic[CF, F], ABC):
self.workspace_config = os.path.join(self.workspace, "workspace_config.json")
# 初始化工作空间配置转换成json格式实现Config的实例化
config_type_json = self._load_config()
if config_type_json is None:
_load_config = self._load_config()
if _load_config is None:
self._config_factory = self._build_config_factory(config_json={})
self.store_config()
else:
config_type = config_type_json.get("type", None)
if self.get_type() != config_type:
raise ValueError(f"Config type mismatch: {self.get_type()} != {config_type}")
config_type_json = self.get_config_by_type(self.get_type())
config_json = config_type_json.get("config")
self._config_factory = self._build_config_factory(config_json)
@ -98,9 +96,39 @@ class ConfigWorkSpace(Generic[CF, F], ABC):
except FileNotFoundError:
return None
@staticmethod
def _get_store_cfg_index_by_type(store_cfg, store_cfg_type) -> int:
if store_cfg is None:
raise RuntimeError("store_cfg is None.")
for cfg in store_cfg:
if cfg.get("type") == store_cfg_type:
return store_cfg.index(cfg)
return -1
def get_config_by_type(self, cfg_type) -> Dict[str, Any]:
store_cfg = self._load_config()
if store_cfg is None:
raise RuntimeError("store_cfg is None.")
get_lambda = lambda store_cfg_type: store_cfg[self._get_store_cfg_index_by_type(store_cfg, store_cfg_type)]
return get_lambda(cfg_type)
def store_config(self):
logger.info("Store workspace config.")
_load_config = self._load_config()
with open(self.workspace_config, "w") as f:
config_json = self.get_config().to_dict()
if _load_config is None:
_load_config = []
config_json_index = self._get_store_cfg_index_by_type(
store_cfg=_load_config,
store_cfg_type=self.get_type()
)
config_type_json = {"type": self.get_type(), "config": config_json}
f.write(json.dumps(config_type_json, indent=4, ensure_ascii=False))
if config_json_index == -1:
_load_config.append(config_type_json)
else:
_load_config[config_json_index] = config_type_json
f.write(json.dumps(_load_config, indent=4, ensure_ascii=False))

View File

@ -1,260 +1,450 @@
import os
import logging
import sys
from pathlib import Path
from typing import Any, Optional, List, Dict
# 默认选用的 LLM 名称
DEFAULT_LLM_MODEL = "chatglm3-6b"
from dataclasses import dataclass
# 默认选用的 Embedding 名称
DEFAULT_EMBEDDING_MODEL = "bge-large-zh-v1.5"
sys.path.append(str(Path(__file__).parent))
import _core_config as core_config
logger = logging.getLogger()
# AgentLM模型的名称 (可以不指定指定之后就锁定进入Agent之后的Chain的模型不指定就是LLM_MODELS[0])
Agent_MODEL = None
class ConfigModel(core_config.Config):
DEFAULT_LLM_MODEL: Optional[str] = None
"""默认选用的 LLM 名称"""
DEFAULT_EMBEDDING_MODEL: Optional[str] = None
"""默认选用的 Embedding 名称"""
Agent_MODEL: Optional[str] = None
"""AgentLM模型的名称 (可以不指定指定之后就锁定进入Agent之后的Chain的模型不指定就是LLM_MODELS[0])"""
HISTORY_LEN: Optional[int] = None
"""历史对话轮数"""
MAX_TOKENS: Optional[int] = None
"""大模型最长支持的长度,如果不填写,则使用模型默认的最大长度,如果填写,则为用户设定的最大长度"""
TEMPERATURE: Optional[float] = None
"""LLM通用对话参数"""
SUPPORT_AGENT_MODELS: Optional[List[str]] = None
"""支持的Agent模型"""
LLM_MODEL_CONFIG: Optional[Dict[str, Dict[str, Any]]] = None
"""LLM模型配置包括了不同模态初始化参数"""
MODEL_PLATFORMS: Optional[List[Dict[str, Any]]] = None
"""模型平台配置"""
MODEL_PROVIDERS_CFG_PATH_CONFIG: Optional[str] = None
"""模型平台配置文件路径"""
MODEL_PROVIDERS_CFG_HOST: Optional[str] = None
"""模型平台配置服务host"""
MODEL_PROVIDERS_CFG_PORT: Optional[int] = None
"""模型平台配置服务port"""
TOOL_CONFIG: Optional[Dict[str, Any]] = None
"""工具配置项"""
# 历史对话轮数
HISTORY_LEN = 3
@classmethod
def class_name(cls) -> str:
return cls.__name__
# 大模型最长支持的长度,如果不填写,则使用模型默认的最大长度,如果填写,则为用户设定的最大长度
MAX_TOKENS = None
# LLM通用对话参数
TEMPERATURE = 0.7
# TOP_P = 0.95 # ChatOpenAI暂不支持该参数
SUPPORT_AGENT_MODELS = [
"chatglm3-6b",
"openai-api",
"Qwen-14B-Chat",
"Qwen-7B-Chat",
"qwen-turbo",
]
def __str__(self):
return self.to_json()
LLM_MODEL_CONFIG = {
# 意图识别不需要输出,模型后台知道就行
"preprocess_model": {
DEFAULT_LLM_MODEL: {
"temperature": 0.05,
"max_tokens": 4096,
"history_len": 100,
"prompt_name": "default",
"callbacks": False
},
},
"llm_model": {
DEFAULT_LLM_MODEL: {
"temperature": 0.9,
"max_tokens": 4096,
"history_len": 10,
"prompt_name": "default",
"callbacks": True
},
},
"action_model": {
DEFAULT_LLM_MODEL: {
"temperature": 0.01,
"max_tokens": 4096,
"prompt_name": "ChatGLM3",
"callbacks": True
},
},
"postprocess_model": {
DEFAULT_LLM_MODEL: {
"temperature": 0.01,
"max_tokens": 4096,
"prompt_name": "default",
"callbacks": True
}
},
"image_model": {
"sd-turbo": {
"size": "256*256",
}
}
}
@dataclass
class ConfigModelFactory(core_config.ConfigFactory[ConfigModel]):
"""ConfigModel工厂类"""
# 可以通过 model_providers 提供转换不同平台的接口为openai endpoint的能力启动后下面变量会自动增加相应的平台
# ### 如果您已经有了一个openai endpoint的能力的地址可以在这里直接配置
# - platform_name 可以任意填写,不要重复即可
# - platform_type 以后可能根据平台类型做一些功能区分,与platform_name一致即可
# - 将框架部署的模型填写到对应列表即可。不同框架可以加载同名模型,项目会自动做负载均衡。
def __init__(self):
# 默认选用的 LLM 名称
self.DEFAULT_LLM_MODEL = "chatglm3-6b"
# 默认选用的 Embedding 名称
self.DEFAULT_EMBEDDING_MODEL = "bge-large-zh-v1.5"
# 创建一个全局的共享字典
MODEL_PLATFORMS = [
# AgentLM模型的名称 (可以不指定指定之后就锁定进入Agent之后的Chain的模型不指定就是LLM_MODELS[0])
self.Agent_MODEL = None
{
"platform_name": "oneapi",
"platform_type": "oneapi",
"api_base_url": "http://127.0.0.1:3000/v1",
"api_key": "sk-",
"api_concurrencies": 5,
"llm_models": [
# 智谱 API
"chatglm_pro",
"chatglm_turbo",
"chatglm_std",
"chatglm_lite",
# 千问 API
# 历史对话轮数
self.HISTORY_LEN = 3
# 大模型最长支持的长度,如果不填写,则使用模型默认的最大长度,如果填写,则为用户设定的最大长度
self.MAX_TOKENS = None
# LLM通用对话参数
self.TEMPERATURE = 0.7
# TOP_P = 0.95 # ChatOpenAI暂不支持该参数
self.SUPPORT_AGENT_MODELS = [
"chatglm3-6b",
"openai-api",
"Qwen-14B-Chat",
"Qwen-7B-Chat",
"qwen-turbo",
"qwen-plus",
"qwen-max",
"qwen-max-longcontext",
# 千帆 API
"ERNIE-Bot",
"ERNIE-Bot-turbo",
"ERNIE-Bot-4",
# 星火 API
"SparkDesk",
],
"embed_models": [
# 千问 API
"text-embedding-v1",
# 千帆 API
"Embedding-V1",
],
"image_models": [],
"reranking_models": [],
"speech2text_models": [],
"tts_models": [],
},
]
{
"platform_name": "xinference",
"platform_type": "xinference",
"api_base_url": "http://127.0.0.1:9997/v1",
"api_key": "EMPTY",
"api_concurrencies": 5,
"llm_models": [
"glm-4",
"qwen2-instruct",
"qwen1.5-chat",
],
"embed_models": [
"bge-large-zh-v1.5",
],
"image_models": [],
"reranking_models": [],
"speech2text_models": [],
"tts_models": [],
},
self.MODEL_PROVIDERS_CFG_PATH_CONFIG = os.path.join(os.path.dirname(os.path.abspath(__file__)),
"model_providers.yaml")
self.MODEL_PROVIDERS_CFG_HOST = "127.0.0.1"
]
self.MODEL_PROVIDERS_CFG_PORT = 20000
MODEL_PROVIDERS_CFG_PATH_CONFIG = os.path.join(os.path.dirname(os.path.abspath(__file__)), "model_providers.yaml")
MODEL_PROVIDERS_CFG_HOST = "127.0.0.1"
self._init_llm_work_config()
MODEL_PROVIDERS_CFG_PORT = 20000
# 工具配置项
TOOL_CONFIG = {
"search_local_knowledgebase": {
"use": False,
"top_k": 3,
"score_threshold": 1.0,
"conclude_prompt": {
"with_result":
'<指令>根据已知信息,简洁和专业的来回答问题。如果无法从中得到答案,请说 "根据已知信息无法回答该问题"'
'不允许在答案中添加编造成分,答案请使用中文。 </指令>\n'
'<已知信息>{{ context }}</已知信息>\n'
'<问题>{{ question }}</问题>\n',
"without_result":
'请你根据我的提问回答我的问题:\n'
'{{ question }}\n'
'请注意,你必须在回答结束后强调,你的回答是根据你的经验回答而不是参考资料回答的。\n',
}
},
"search_internet": {
"use": False,
"search_engine_name": "bing",
"search_engine_config":
{
"bing": {
"result_len": 3,
"bing_search_url": "https://api.bing.microsoft.com/v7.0/search",
"bing_key": "",
def _init_llm_work_config(self):
"""初始化知识库runtime的一些配置"""
self.LLM_MODEL_CONFIG = {
# 意图识别不需要输出,模型后台知道就行
"preprocess_model": {
self.DEFAULT_LLM_MODEL: {
"temperature": 0.05,
"max_tokens": 4096,
"history_len": 100,
"prompt_name": "default",
"callbacks": False
},
"metaphor": {
"result_len": 3,
"metaphor_api_key": "",
"split_result": False,
"chunk_size": 500,
"chunk_overlap": 0,
},
"llm_model": {
self.DEFAULT_LLM_MODEL: {
"temperature": 0.9,
"max_tokens": 4096,
"history_len": 10,
"prompt_name": "default",
"callbacks": True
},
"duckduckgo": {
"result_len": 3
},
"action_model": {
self.DEFAULT_LLM_MODEL: {
"temperature": 0.01,
"max_tokens": 4096,
"prompt_name": "ChatGLM3",
"callbacks": True
},
},
"postprocess_model": {
self.DEFAULT_LLM_MODEL: {
"temperature": 0.01,
"max_tokens": 4096,
"prompt_name": "default",
"callbacks": True
}
},
"top_k": 10,
"verbose": "Origin",
"conclude_prompt":
"<指令>这是搜索到的互联网信息,请你根据这些信息进行提取并有调理,简洁的回答问题。如果无法从中得到答案,请说 “无法搜索到能回答问题的内容”。 "
"</指令>\n<已知信息>{{ context }}</已知信息>\n"
"<问题>\n"
"{{ question }}\n"
"</问题>\n"
},
"arxiv": {
"use": False,
},
"shell": {
"use": False,
},
"weather_check": {
"use": False,
"api_key": "S8vrB4U_-c5mvAMiK",
},
"search_youtube": {
"use": False,
},
"wolfram": {
"use": False,
"appid": "",
},
"calculate": {
"use": False,
},
"vqa_processor": {
"use": False,
"model_path": "your model path",
"tokenizer_path": "your tokenizer path",
"device": "cuda:1"
},
"aqa_processor": {
"use": False,
"model_path": "your model path",
"tokenizer_path": "yout tokenizer path",
"device": "cuda:2"
},
"text2images": {
"use": False,
},
# text2sql使用建议
# 1、因大模型生成的sql可能与预期有偏差请务必在测试环境中进行充分测试、评估
# 2、生产环境中对于查询操作由于不确定查询效率推荐数据库采用主从数据库架构让text2sql连接从数据库防止可能的慢查询影响主业务
# 3、对于写操作应保持谨慎如不需要写操作设置read_only为True,最好再从数据库层面收回数据库用户的写权限,防止用户通过自然语言对数据库进行修改操作;
# 4、text2sql与大模型在意图理解、sql转换等方面的能力有关可切换不同大模型进行测试
# 5、数据库表名、字段名应与其实际作用保持一致、容易理解且应对数据库表名、字段进行详细的备注说明帮助大模型更好理解数据库结构
# 6、若现有数据库表名难于让大模型理解可配置下面table_comments字段补充说明某些表的作用。
"text2sql": {
"use": False,
# SQLAlchemy连接字符串支持的数据库有
# crate、duckdb、googlesql、mssql、mysql、mariadb、oracle、postgresql、sqlite、clickhouse、prestodb
# 不同的数据库请查询SQLAlchemy修改sqlalchemy_connect_str配置对应的数据库连接如sqlite为sqlite:///数据库文件路径下面示例为mysql
# 如提示缺少对应数据库的驱动请自行通过poetry安装
"sqlalchemy_connect_str": "mysql+pymysql://用户名:密码@主机地址/数据库名称e",
# 务必评估是否需要开启read_only,开启后会对sql语句进行检查请确认text2sql.py中的intercept_sql拦截器是否满足你使用的数据库只读要求
# 优先推荐从数据库层面对用户权限进行限制
"read_only": False,
#限定返回的行数
"top_k":50,
#是否返回中间步骤
"return_intermediate_steps": True,
#如果想指定特定表,请填写表名称,如["sys_user","sys_dept"],不填写走智能判断应该使用哪些表
"table_names":[],
#对表名进行额外说明辅助大模型更好的判断应该使用哪些表尤其是SQLDatabaseSequentialChain模式下,是根据表名做的预测,很容易误判。
"table_comments":{
# 如果出现大模型选错表的情况,可尝试根据实际情况填写表名和说明
# "tableA":"这是一个用户表,存储了用户的基本信息",
# "tanleB":"角色表",
"image_model": {
"sd-turbo": {
"size": "256*256",
}
}
}
},
}
# 可以通过 model_providers 提供转换不同平台的接口为openai endpoint的能力启动后下面变量会自动增加相应的平台
# ### 如果您已经有了一个openai endpoint的能力的地址可以在这里直接配置
# - platform_name 可以任意填写,不要重复即可
# - platform_type 以后可能根据平台类型做一些功能区分,与platform_name一致即可
# - 将框架部署的模型填写到对应列表即可。不同框架可以加载同名模型,项目会自动做负载均衡。
# 创建一个全局的共享字典
self.MODEL_PLATFORMS = [
{
"platform_name": "oneapi",
"platform_type": "oneapi",
"api_base_url": "http://127.0.0.1:3000/v1",
"api_key": "sk-",
"api_concurrencies": 5,
"llm_models": [
# 智谱 API
"chatglm_pro",
"chatglm_turbo",
"chatglm_std",
"chatglm_lite",
# 千问 API
"qwen-turbo",
"qwen-plus",
"qwen-max",
"qwen-max-longcontext",
# 千帆 API
"ERNIE-Bot",
"ERNIE-Bot-turbo",
"ERNIE-Bot-4",
# 星火 API
"SparkDesk",
],
"embed_models": [
# 千问 API
"text-embedding-v1",
# 千帆 API
"Embedding-V1",
],
"image_models": [],
"reranking_models": [],
"speech2text_models": [],
"tts_models": [],
},
{
"platform_name": "xinference",
"platform_type": "xinference",
"api_base_url": "http://127.0.0.1:9997/v1",
"api_key": "EMPTY",
"api_concurrencies": 5,
"llm_models": [
"glm-4",
"qwen2-instruct",
"qwen1.5-chat",
],
"embed_models": [
"bge-large-zh-v1.5",
],
"image_models": [],
"reranking_models": [],
"speech2text_models": [],
"tts_models": [],
},
]
# 工具配置项
self.TOOL_CONFIG = {
"search_local_knowledgebase": {
"use": False,
"top_k": 3,
"score_threshold": 1.0,
"conclude_prompt": {
"with_result":
'<指令>根据已知信息,简洁和专业的来回答问题。如果无法从中得到答案,请说 "根据已知信息无法回答该问题"'
'不允许在答案中添加编造成分,答案请使用中文。 </指令>\n'
'<已知信息>{{ context }}</已知信息>\n'
'<问题>{{ question }}</问题>\n',
"without_result":
'请你根据我的提问回答我的问题:\n'
'{{ question }}\n'
'请注意,你必须在回答结束后强调,你的回答是根据你的经验回答而不是参考资料回答的。\n',
}
},
"search_internet": {
"use": False,
"search_engine_name": "bing",
"search_engine_config":
{
"bing": {
"result_len": 3,
"bing_search_url": "https://api.bing.microsoft.com/v7.0/search",
"bing_key": "",
},
"metaphor": {
"result_len": 3,
"metaphor_api_key": "",
"split_result": False,
"chunk_size": 500,
"chunk_overlap": 0,
},
"duckduckgo": {
"result_len": 3
}
},
"top_k": 10,
"verbose": "Origin",
"conclude_prompt":
"<指令>这是搜索到的互联网信息,请你根据这些信息进行提取并有调理,简洁的回答问题。如果无法从中得到答案,请说 “无法搜索到能回答问题的内容”。 "
"</指令>\n<已知信息>{{ context }}</已知信息>\n"
"<问题>\n"
"{{ question }}\n"
"</问题>\n"
},
"arxiv": {
"use": False,
},
"shell": {
"use": False,
},
"weather_check": {
"use": False,
"api_key": "S8vrB4U_-c5mvAMiK",
},
"search_youtube": {
"use": False,
},
"wolfram": {
"use": False,
"appid": "",
},
"calculate": {
"use": False,
},
"vqa_processor": {
"use": False,
"model_path": "your model path",
"tokenizer_path": "your tokenizer path",
"device": "cuda:1"
},
"aqa_processor": {
"use": False,
"model_path": "your model path",
"tokenizer_path": "yout tokenizer path",
"device": "cuda:2"
},
"text2images": {
"use": False,
},
# text2sql使用建议
# 1、因大模型生成的sql可能与预期有偏差请务必在测试环境中进行充分测试、评估
# 2、生产环境中对于查询操作由于不确定查询效率推荐数据库采用主从数据库架构让text2sql连接从数据库防止可能的慢查询影响主业务
# 3、对于写操作应保持谨慎如不需要写操作设置read_only为True,最好再从数据库层面收回数据库用户的写权限,防止用户通过自然语言对数据库进行修改操作;
# 4、text2sql与大模型在意图理解、sql转换等方面的能力有关可切换不同大模型进行测试
# 5、数据库表名、字段名应与其实际作用保持一致、容易理解且应对数据库表名、字段进行详细的备注说明帮助大模型更好理解数据库结构
# 6、若现有数据库表名难于让大模型理解可配置下面table_comments字段补充说明某些表的作用。
"text2sql": {
"use": False,
# SQLAlchemy连接字符串支持的数据库有
# crate、duckdb、googlesql、mssql、mysql、mariadb、oracle、postgresql、sqlite、clickhouse、prestodb
# 不同的数据库请查询SQLAlchemy修改sqlalchemy_connect_str配置对应的数据库连接如sqlite为sqlite:///数据库文件路径下面示例为mysql
# 如提示缺少对应数据库的驱动请自行通过poetry安装
"sqlalchemy_connect_str": "mysql+pymysql://用户名:密码@主机地址/数据库名称e",
# 务必评估是否需要开启read_only,开启后会对sql语句进行检查请确认text2sql.py中的intercept_sql拦截器是否满足你使用的数据库只读要求
# 优先推荐从数据库层面对用户权限进行限制
"read_only": False,
# 限定返回的行数
"top_k": 50,
# 是否返回中间步骤
"return_intermediate_steps": True,
# 如果想指定特定表,请填写表名称,如["sys_user","sys_dept"],不填写走智能判断应该使用哪些表
"table_names": [],
# 对表名进行额外说明辅助大模型更好的判断应该使用哪些表尤其是SQLDatabaseSequentialChain模式下,是根据表名做的预测,很容易误判。
"table_comments": {
# 如果出现大模型选错表的情况,可尝试根据实际情况填写表名和说明
# "tableA":"这是一个用户表,存储了用户的基本信息",
# "tanleB":"角色表",
}
},
}
def default_llm_model(self, llm_model: str):
self.DEFAULT_LLM_MODEL = llm_model
def default_embedding_model(self, embedding_model: str):
self.DEFAULT_EMBEDDING_MODEL = embedding_model
def agent_model(self, agent_model: str):
self.Agent_MODEL = agent_model
def history_len(self, history_len: int):
self.HISTORY_LEN = history_len
def max_tokens(self, max_tokens: int):
self.MAX_TOKENS = max_tokens
def temperature(self, temperature: float):
self.TEMPERATURE = temperature
def support_agent_models(self, support_agent_models: List[str]):
self.SUPPORT_AGENT_MODELS = support_agent_models
def model_providers_cfg_path_config(self, model_providers_cfg_path_config: str):
self.MODEL_PROVIDERS_CFG_PATH_CONFIG = model_providers_cfg_path_config
def model_providers_cfg_host(self, model_providers_cfg_host: str):
self.MODEL_PROVIDERS_CFG_HOST = model_providers_cfg_host
def model_providers_cfg_port(self, model_providers_cfg_port: int):
self.MODEL_PROVIDERS_CFG_PORT = model_providers_cfg_port
def get_config(self) -> ConfigModel:
config = ConfigModel()
config.DEFAULT_LLM_MODEL = self.DEFAULT_LLM_MODEL
config.DEFAULT_EMBEDDING_MODEL = self.DEFAULT_EMBEDDING_MODEL
config.Agent_MODEL = self.Agent_MODEL
config.HISTORY_LEN = self.HISTORY_LEN
config.MAX_TOKENS = self.MAX_TOKENS
config.TEMPERATURE = self.TEMPERATURE
config.SUPPORT_AGENT_MODELS = self.SUPPORT_AGENT_MODELS
config.LLM_MODEL_CONFIG = self.LLM_MODEL_CONFIG
config.MODEL_PLATFORMS = self.MODEL_PLATFORMS
config.MODEL_PROVIDERS_CFG_PATH_CONFIG = self.MODEL_PROVIDERS_CFG_PATH_CONFIG
config.MODEL_PROVIDERS_CFG_HOST = self.MODEL_PROVIDERS_CFG_HOST
config.MODEL_PROVIDERS_CFG_PORT = self.MODEL_PROVIDERS_CFG_PORT
config.TOOL_CONFIG = self.TOOL_CONFIG
return config
class ConfigModelWorkSpace(core_config.ConfigWorkSpace[ConfigModelFactory, ConfigModel]):
"""
工作空间的配置预设, 提供ConfigModel建造方法产生实例
"""
config_factory_cls = ConfigModelFactory
def __init__(self):
super().__init__()
def _build_config_factory(self, config_json: Any) -> ConfigModelFactory:
_config_factory = self.config_factory_cls()
if config_json.get("DEFAULT_LLM_MODEL"):
_config_factory.default_llm_model(config_json.get("DEFAULT_LLM_MODEL"))
if config_json.get("DEFAULT_EMBEDDING_MODEL"):
_config_factory.default_embedding_model(config_json.get("DEFAULT_EMBEDDING_MODEL"))
if config_json.get("Agent_MODEL"):
_config_factory.agent_model(config_json.get("Agent_MODEL"))
if config_json.get("HISTORY_LEN"):
_config_factory.history_len(config_json.get("HISTORY_LEN"))
if config_json.get("MAX_TOKENS"):
_config_factory.max_tokens(config_json.get("MAX_TOKENS"))
if config_json.get("TEMPERATURE"):
_config_factory.temperature(config_json.get("TEMPERATURE"))
if config_json.get("SUPPORT_AGENT_MODELS"):
_config_factory.support_agent_models(config_json.get("SUPPORT_AGENT_MODELS"))
if config_json.get("MODEL_PROVIDERS_CFG_PATH_CONFIG"):
_config_factory.model_providers_cfg_path_config(config_json.get("MODEL_PROVIDERS_CFG_PATH_CONFIG"))
if config_json.get("MODEL_PROVIDERS_CFG_HOST"):
_config_factory.model_providers_cfg_host(config_json.get("MODEL_PROVIDERS_CFG_HOST"))
if config_json.get("MODEL_PROVIDERS_CFG_PORT"):
_config_factory.model_providers_cfg_port(config_json.get("MODEL_PROVIDERS_CFG_PORT"))
return _config_factory
@classmethod
def get_type(cls) -> str:
return ConfigModel.class_name()
def get_config(self) -> ConfigModel:
return self._config_factory.get_config()
def set_default_llm_model(self, llm_model: str):
self._config_factory.default_llm_model(llm_model)
self.store_config()
def set_default_embedding_model(self, embedding_model: str):
self._config_factory.default_embedding_model(embedding_model)
self.store_config()
def set_agent_model(self, agent_model: str):
self._config_factory.agent_model(agent_model)
self.store_config()
def set_history_len(self, history_len: int):
self._config_factory.history_len(history_len)
self.store_config()
def set_max_tokens(self, max_tokens: int):
self._config_factory.max_tokens(max_tokens)
self.store_config()
def set_temperature(self, temperature: float):
self._config_factory.temperature(temperature)
self.store_config()
def set_support_agent_models(self, support_agent_models: List[str]):
self._config_factory.support_agent_models(support_agent_models)
self.store_config()
def set_model_providers_cfg_path_config(self, model_providers_cfg_path_config: str):
self._config_factory.model_providers_cfg_path_config(model_providers_cfg_path_config)
self.store_config()
def set_model_providers_cfg_host(self, model_providers_cfg_host: str):
self._config_factory.model_providers_cfg_host(model_providers_cfg_host)
self.store_config()
def set_model_providers_cfg_port(self, model_providers_cfg_port: int):
self._config_factory.model_providers_cfg_port(model_providers_cfg_port)
self.store_config()
config_model_workspace: ConfigModelWorkSpace = ConfigModelWorkSpace()

View File

@ -1,6 +1,6 @@
[tool.poetry]
name = "langchain-chatchat"
version = "0.3.0.20240610.1"
version = "0.3.0.20240611"
description = ""
authors = ["chatchat"]
readme = "README.md"

View File

@ -1,6 +1,12 @@
from pathlib import Path
from chatchat.configs import ConfigBasicFactory, ConfigBasic, ConfigBasicWorkSpace
from chatchat.configs import (
ConfigBasicFactory,
ConfigBasic,
ConfigBasicWorkSpace,
ConfigModelWorkSpace,
ConfigModel
)
import os
@ -36,3 +42,56 @@ def test_workspace_default():
assert LOG_FORMAT is not None
assert LOG_PATH is not None
assert MEDIA_PATH is not None
def test_config_model_workspace():
config_model_workspace: ConfigModelWorkSpace = ConfigModelWorkSpace()
assert config_model_workspace.get_config() is not None
config_model_workspace.set_default_llm_model(llm_model="glm4")
config_model_workspace.set_default_embedding_model(embedding_model="text1")
config_model_workspace.set_agent_model(agent_model="agent")
config_model_workspace.set_history_len(history_len=1)
config_model_workspace.set_max_tokens(max_tokens=1000)
config_model_workspace.set_temperature(temperature=0.1)
config_model_workspace.set_support_agent_models(support_agent_models=["glm4"])
config_model_workspace.set_model_providers_cfg_path_config(model_providers_cfg_path_config="model_providers.yaml")
config_model_workspace.set_model_providers_cfg_host(model_providers_cfg_host="127.0.0.1")
config_model_workspace.set_model_providers_cfg_port(model_providers_cfg_port=8000)
config: ConfigModel = config_model_workspace.get_config()
assert config.DEFAULT_LLM_MODEL == "glm4"
assert config.DEFAULT_EMBEDDING_MODEL == "text1"
assert config.Agent_MODEL == "agent"
assert config.HISTORY_LEN == 1
assert config.MAX_TOKENS == 1000
assert config.TEMPERATURE == 0.1
assert config.SUPPORT_AGENT_MODELS == ["glm4"]
assert config.MODEL_PROVIDERS_CFG_PATH_CONFIG == "model_providers.yaml"
assert config.MODEL_PROVIDERS_CFG_HOST == "127.0.0.1"
assert config.MODEL_PROVIDERS_CFG_PORT == 8000
config_model_workspace.clear()
def test_model_config():
from chatchat.configs import (
DEFAULT_LLM_MODEL, DEFAULT_EMBEDDING_MODEL, Agent_MODEL, HISTORY_LEN, MAX_TOKENS, TEMPERATURE,
SUPPORT_AGENT_MODELS, MODEL_PROVIDERS_CFG_PATH_CONFIG, MODEL_PROVIDERS_CFG_HOST, MODEL_PROVIDERS_CFG_PORT,
TOOL_CONFIG, MODEL_PLATFORMS, LLM_MODEL_CONFIG
)
assert DEFAULT_LLM_MODEL is not None
assert DEFAULT_EMBEDDING_MODEL is not None
assert Agent_MODEL is None
assert HISTORY_LEN is not None
assert MAX_TOKENS is None
assert TEMPERATURE is not None
assert SUPPORT_AGENT_MODELS is not None
assert MODEL_PROVIDERS_CFG_PATH_CONFIG is not None
assert MODEL_PROVIDERS_CFG_HOST is not None
assert MODEL_PROVIDERS_CFG_PORT is not None
assert TOOL_CONFIG is not None
assert MODEL_PLATFORMS is not None
assert LLM_MODEL_CONFIG is not None