mirror of
https://github.com/RYDE-WORK/Langchain-Chatchat.git
synced 2026-01-19 13:23:16 +08:00
parent
117bc9c3e8
commit
e7a5d6a528
@ -1,52 +1,88 @@
|
||||
from chatchat.configs import config_basic_workspace as workspace
|
||||
from chatchat.configs import (
|
||||
config_basic_workspace,
|
||||
config_model_workspace,
|
||||
)
|
||||
|
||||
# We cannot lazy-load click here because its used via decorators.
|
||||
import click
|
||||
|
||||
|
||||
@click.group(help="指令` chatchat-config` 工作空间配置")
|
||||
def main():
|
||||
import argparse
|
||||
pass
|
||||
|
||||
parser = argparse.ArgumentParser(description="指令` chatchat-config` 工作空间配置")
|
||||
# 只能选择true或false
|
||||
parser.add_argument(
|
||||
"-v",
|
||||
"--verbose",
|
||||
choices=["true", "false"],
|
||||
help="是否开启详细日志"
|
||||
)
|
||||
parser.add_argument(
|
||||
"-d",
|
||||
"--data",
|
||||
help="数据存放路径"
|
||||
)
|
||||
parser.add_argument(
|
||||
"-f",
|
||||
"--format",
|
||||
help="日志格式"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--clear",
|
||||
action="store_true",
|
||||
help="清除配置"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--show",
|
||||
action="store_true",
|
||||
help="显示配置"
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.verbose:
|
||||
if args.verbose.lower() == "true":
|
||||
workspace.set_log_verbose(True)
|
||||
@main.command("basic", help="基础配置")
|
||||
@click.option("--verbose", type=click.Choice(["true", "false"]), help="是否开启详细日志")
|
||||
@click.option("--data", help="数据存放路径")
|
||||
@click.option("--format", help="日志格式")
|
||||
@click.option("--clear", is_flag=True, help="清除配置")
|
||||
@click.option("--show", is_flag=True, help="显示配置")
|
||||
def basic(**kwargs):
|
||||
|
||||
if kwargs["verbose"]:
|
||||
if kwargs["verbose"].lower() == "true":
|
||||
config_basic_workspace.set_log_verbose(True)
|
||||
else:
|
||||
workspace.set_log_verbose(False)
|
||||
if args.data:
|
||||
workspace.set_data_path(args.data)
|
||||
if args.format:
|
||||
workspace.set_log_format(args.format)
|
||||
if args.clear:
|
||||
workspace.clear()
|
||||
if args.show:
|
||||
print(workspace.get_config())
|
||||
config_basic_workspace.set_log_verbose(False)
|
||||
if kwargs["data"]:
|
||||
config_basic_workspace.set_data_path(kwargs["data"])
|
||||
if kwargs["format"]:
|
||||
config_basic_workspace.set_log_format(kwargs["format"])
|
||||
if kwargs["clear"]:
|
||||
config_basic_workspace.clear()
|
||||
if kwargs["show"]:
|
||||
print(config_basic_workspace.get_config())
|
||||
|
||||
|
||||
@main.command("model", help="模型配置")
|
||||
@click.option("--default_llm_model", help="默认llm模型")
|
||||
@click.option("--default_embedding_model", help="默认embedding模型")
|
||||
@click.option("--agent_model", help="agent模型")
|
||||
@click.option("--history_len", type=int, help="历史长度")
|
||||
@click.option("--max_tokens", type=int, help="最大tokens")
|
||||
@click.option("--temperature", type=float, help="温度")
|
||||
@click.option("--support_agent_models", multiple=True, help="支持的agent模型")
|
||||
@click.option("--model_providers_cfg_path_config", help="模型平台配置文件路径")
|
||||
@click.option("--model_providers_cfg_host", help="模型平台配置服务host")
|
||||
@click.option("--model_providers_cfg_port", type=int, help="模型平台配置服务port")
|
||||
@click.option("--clear", is_flag=True, help="清除配置")
|
||||
@click.option("--show", is_flag=True, help="显示配置")
|
||||
def model(**kwargs):
|
||||
|
||||
if kwargs["default_llm_model"]:
|
||||
config_model_workspace.set_default_llm_model(llm_model=kwargs["default_llm_model"])
|
||||
if kwargs["default_embedding_model"]:
|
||||
config_model_workspace.set_default_embedding_model(embedding_model=kwargs["default_embedding_model"])
|
||||
|
||||
if kwargs["agent_model"]:
|
||||
config_model_workspace.set_agent_model(agent_model=kwargs["agent_model"])
|
||||
|
||||
if kwargs["history_len"]:
|
||||
config_model_workspace.set_history_len(history_len=kwargs["history_len"])
|
||||
|
||||
if kwargs["max_tokens"]:
|
||||
config_model_workspace.set_max_tokens(max_tokens=kwargs["max_tokens"])
|
||||
|
||||
if kwargs["temperature"]:
|
||||
config_model_workspace.set_temperature(temperature=kwargs["temperature"])
|
||||
|
||||
if kwargs["support_agent_models"]:
|
||||
config_model_workspace.set_support_agent_models(support_agent_models=kwargs["support_agent_models"])
|
||||
|
||||
if kwargs["model_providers_cfg_path_config"]:
|
||||
config_model_workspace.set_model_providers_cfg_path_config(model_providers_cfg_path_config=kwargs["model_providers_cfg_path_config"])
|
||||
|
||||
if kwargs["model_providers_cfg_host"]:
|
||||
config_model_workspace.set_model_providers_cfg_host(model_providers_cfg_host=kwargs["model_providers_cfg_host"])
|
||||
|
||||
if kwargs["model_providers_cfg_port"]:
|
||||
config_model_workspace.set_model_providers_cfg_port(model_providers_cfg_port=kwargs["model_providers_cfg_port"])
|
||||
|
||||
if kwargs["clear"]:
|
||||
config_model_workspace.clear()
|
||||
if kwargs["show"]:
|
||||
print(config_model_workspace.get_config())
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
@ -363,108 +363,140 @@ def _import_embedding_keyword_file() -> Any:
|
||||
return EMBEDDING_KEYWORD_FILE
|
||||
|
||||
|
||||
def _import_ConfigModel() -> Any:
|
||||
basic_config_load = CONFIG_IMPORTS.get("_model_config.py")
|
||||
load_mod = basic_config_load.get("load_mod")
|
||||
ConfigModel = load_mod(basic_config_load.get("module"), "ConfigModel")
|
||||
|
||||
return ConfigModel
|
||||
|
||||
|
||||
def _import_ConfigModelFactory() -> Any:
|
||||
basic_config_load = CONFIG_IMPORTS.get("_model_config.py")
|
||||
load_mod = basic_config_load.get("load_mod")
|
||||
ConfigModelFactory = load_mod(basic_config_load.get("module"), "ConfigModelFactory")
|
||||
|
||||
return ConfigModelFactory
|
||||
|
||||
|
||||
def _import_ConfigModelWorkSpace() -> Any:
|
||||
basic_config_load = CONFIG_IMPORTS.get("_model_config.py")
|
||||
load_mod = basic_config_load.get("load_mod")
|
||||
ConfigModelWorkSpace = load_mod(basic_config_load.get("module"), "ConfigModelWorkSpace")
|
||||
|
||||
return ConfigModelWorkSpace
|
||||
|
||||
|
||||
def _import_config_model_workspace() -> Any:
|
||||
model_config_load = CONFIG_IMPORTS.get("_model_config.py")
|
||||
load_mod = model_config_load.get("load_mod")
|
||||
config_model_workspace = load_mod(model_config_load.get("module"), "config_model_workspace")
|
||||
return config_model_workspace
|
||||
|
||||
|
||||
def _import_default_llm_model() -> Any:
|
||||
model_config_load = CONFIG_IMPORTS.get("_model_config.py")
|
||||
load_mod = model_config_load.get("load_mod")
|
||||
DEFAULT_LLM_MODEL = load_mod(model_config_load.get("module"), "DEFAULT_LLM_MODEL")
|
||||
config_model_workspace = load_mod(model_config_load.get("module"), "config_model_workspace")
|
||||
|
||||
return DEFAULT_LLM_MODEL
|
||||
return config_model_workspace.get_config().DEFAULT_LLM_MODEL
|
||||
|
||||
|
||||
def _import_default_embedding_model() -> Any:
|
||||
model_config_load = CONFIG_IMPORTS.get("_model_config.py")
|
||||
load_mod = model_config_load.get("load_mod")
|
||||
DEFAULT_EMBEDDING_MODEL = load_mod(model_config_load.get("module"), "DEFAULT_EMBEDDING_MODEL")
|
||||
|
||||
return DEFAULT_EMBEDDING_MODEL
|
||||
config_model_workspace = load_mod(model_config_load.get("module"), "config_model_workspace")
|
||||
|
||||
return config_model_workspace.get_config().DEFAULT_EMBEDDING_MODEL
|
||||
|
||||
|
||||
def _import_agent_model() -> Any:
|
||||
model_config_load = CONFIG_IMPORTS.get("_model_config.py")
|
||||
load_mod = model_config_load.get("load_mod")
|
||||
Agent_MODEL = load_mod(model_config_load.get("module"), "Agent_MODEL")
|
||||
config_model_workspace = load_mod(model_config_load.get("module"), "config_model_workspace")
|
||||
|
||||
return Agent_MODEL
|
||||
return config_model_workspace.get_config().Agent_MODEL
|
||||
|
||||
|
||||
def _import_history_len() -> Any:
|
||||
model_config_load = CONFIG_IMPORTS.get("_model_config.py")
|
||||
load_mod = model_config_load.get("load_mod")
|
||||
HISTORY_LEN = load_mod(model_config_load.get("module"), "HISTORY_LEN")
|
||||
config_model_workspace = load_mod(model_config_load.get("module"), "config_model_workspace")
|
||||
|
||||
return HISTORY_LEN
|
||||
return config_model_workspace.get_config().HISTORY_LEN
|
||||
|
||||
|
||||
def _import_max_tokens() -> Any:
|
||||
model_config_load = CONFIG_IMPORTS.get("_model_config.py")
|
||||
load_mod = model_config_load.get("load_mod")
|
||||
MAX_TOKENS = load_mod(model_config_load.get("module"), "MAX_TOKENS")
|
||||
config_model_workspace = load_mod(model_config_load.get("module"), "config_model_workspace")
|
||||
|
||||
return MAX_TOKENS
|
||||
return config_model_workspace.get_config().MAX_TOKENS
|
||||
|
||||
|
||||
def _import_temperature() -> Any:
|
||||
model_config_load = CONFIG_IMPORTS.get("_model_config.py")
|
||||
load_mod = model_config_load.get("load_mod")
|
||||
TEMPERATURE = load_mod(model_config_load.get("module"), "TEMPERATURE")
|
||||
config_model_workspace = load_mod(model_config_load.get("module"), "config_model_workspace")
|
||||
|
||||
return TEMPERATURE
|
||||
return config_model_workspace.get_config().TEMPERATURE
|
||||
|
||||
|
||||
def _import_support_agent_models() -> Any:
|
||||
model_config_load = CONFIG_IMPORTS.get("_model_config.py")
|
||||
load_mod = model_config_load.get("load_mod")
|
||||
SUPPORT_AGENT_MODELS = load_mod(model_config_load.get("module"), "SUPPORT_AGENT_MODELS")
|
||||
config_model_workspace = load_mod(model_config_load.get("module"), "config_model_workspace")
|
||||
|
||||
return SUPPORT_AGENT_MODELS
|
||||
return config_model_workspace.get_config().SUPPORT_AGENT_MODELS
|
||||
|
||||
|
||||
def _import_llm_model_config() -> Any:
|
||||
model_config_load = CONFIG_IMPORTS.get("_model_config.py")
|
||||
load_mod = model_config_load.get("load_mod")
|
||||
LLM_MODEL_CONFIG = load_mod(model_config_load.get("module"), "LLM_MODEL_CONFIG")
|
||||
config_model_workspace = load_mod(model_config_load.get("module"), "config_model_workspace")
|
||||
|
||||
return LLM_MODEL_CONFIG
|
||||
return config_model_workspace.get_config().LLM_MODEL_CONFIG
|
||||
|
||||
|
||||
def _import_model_platforms() -> Any:
|
||||
model_config_load = CONFIG_IMPORTS.get("_model_config.py")
|
||||
load_mod = model_config_load.get("load_mod")
|
||||
MODEL_PLATFORMS = load_mod(model_config_load.get("module"), "MODEL_PLATFORMS")
|
||||
config_model_workspace = load_mod(model_config_load.get("module"), "config_model_workspace")
|
||||
|
||||
return MODEL_PLATFORMS
|
||||
return config_model_workspace.get_config().MODEL_PLATFORMS
|
||||
|
||||
|
||||
def _import_model_providers_cfg_path() -> Any:
|
||||
model_config_load = CONFIG_IMPORTS.get("_model_config.py")
|
||||
load_mod = model_config_load.get("load_mod")
|
||||
MODEL_PROVIDERS_CFG_PATH_CONFIG = load_mod(model_config_load.get("module"), "MODEL_PROVIDERS_CFG_PATH_CONFIG")
|
||||
config_model_workspace = load_mod(model_config_load.get("module"), "config_model_workspace")
|
||||
|
||||
return MODEL_PROVIDERS_CFG_PATH_CONFIG
|
||||
return config_model_workspace.get_config().MODEL_PROVIDERS_CFG_PATH_CONFIG
|
||||
|
||||
|
||||
def _import_model_providers_cfg_host() -> Any:
|
||||
model_config_load = CONFIG_IMPORTS.get("_model_config.py")
|
||||
load_mod = model_config_load.get("load_mod")
|
||||
MODEL_PROVIDERS_CFG_HOST = load_mod(model_config_load.get("module"), "MODEL_PROVIDERS_CFG_HOST")
|
||||
config_model_workspace = load_mod(model_config_load.get("module"), "config_model_workspace")
|
||||
|
||||
return MODEL_PROVIDERS_CFG_HOST
|
||||
return config_model_workspace.get_config().MODEL_PROVIDERS_CFG_HOST
|
||||
|
||||
|
||||
def _import_model_providers_cfg_port() -> Any:
|
||||
model_config_load = CONFIG_IMPORTS.get("_model_config.py")
|
||||
load_mod = model_config_load.get("load_mod")
|
||||
MODEL_PROVIDERS_CFG_PORT = load_mod(model_config_load.get("module"), "MODEL_PROVIDERS_CFG_PORT")
|
||||
config_model_workspace = load_mod(model_config_load.get("module"), "config_model_workspace")
|
||||
|
||||
return MODEL_PROVIDERS_CFG_PORT
|
||||
return config_model_workspace.get_config().MODEL_PROVIDERS_CFG_PORT
|
||||
|
||||
|
||||
def _import_tool_config() -> Any:
|
||||
model_config_load = CONFIG_IMPORTS.get("_model_config.py")
|
||||
load_mod = model_config_load.get("load_mod")
|
||||
TOOL_CONFIG = load_mod(model_config_load.get("module"), "TOOL_CONFIG")
|
||||
config_model_workspace = load_mod(model_config_load.get("module"), "config_model_workspace")
|
||||
|
||||
return TOOL_CONFIG
|
||||
return config_model_workspace.get_config().TOOL_CONFIG
|
||||
|
||||
|
||||
def _import_prompt_templates() -> Any:
|
||||
@ -524,6 +556,14 @@ def __getattr__(name: str) -> Any:
|
||||
return _import_ConfigBasicWorkSpace()
|
||||
elif name == "config_basic_workspace":
|
||||
return _import_config_basic_workspace()
|
||||
elif name == "ConfigModel":
|
||||
return _import_ConfigModel()
|
||||
elif name == "ConfigModelFactory":
|
||||
return _import_ConfigModelFactory()
|
||||
elif name == "ConfigModelWorkSpace":
|
||||
return _import_ConfigModelWorkSpace()
|
||||
elif name == "config_model_workspace":
|
||||
return _import_config_model_workspace()
|
||||
elif name == "log_verbose":
|
||||
return _import_log_verbose()
|
||||
elif name == "CHATCHAT_ROOT":
|
||||
@ -624,7 +664,6 @@ VERSION = "v0.3.0-preview"
|
||||
|
||||
__all__ = [
|
||||
"VERSION",
|
||||
"config_basic_workspace",
|
||||
"log_verbose",
|
||||
"CHATCHAT_ROOT",
|
||||
"DATA_PATH",
|
||||
@ -677,4 +716,12 @@ __all__ = [
|
||||
"ConfigBasicFactory",
|
||||
"ConfigBasicWorkSpace",
|
||||
|
||||
"config_basic_workspace",
|
||||
|
||||
"ConfigModel",
|
||||
"ConfigModelFactory",
|
||||
"ConfigModelWorkSpace",
|
||||
|
||||
"config_model_workspace",
|
||||
|
||||
]
|
||||
|
||||
@ -6,7 +6,6 @@ import sys
|
||||
import logging
|
||||
from typing import Any, Optional
|
||||
|
||||
from chatchat.configs._core_config import CF
|
||||
|
||||
sys.path.append(str(Path(__file__).parent))
|
||||
import _core_config as core_config
|
||||
@ -128,6 +127,9 @@ class ConfigBasicWorkSpace(core_config.ConfigWorkSpace[ConfigBasicFactory, Confi
|
||||
"""
|
||||
config_factory_cls = ConfigBasicFactory
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def _build_config_factory(self, config_json: Any) -> ConfigBasicFactory:
|
||||
|
||||
_config_factory = self.config_factory_cls()
|
||||
@ -145,9 +147,6 @@ class ConfigBasicWorkSpace(core_config.ConfigWorkSpace[ConfigBasicFactory, Confi
|
||||
def get_type(cls) -> str:
|
||||
return ConfigBasic.class_name()
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def get_config(self) -> ConfigBasic:
|
||||
return self._config_factory.get_config()
|
||||
|
||||
@ -163,9 +162,5 @@ class ConfigBasicWorkSpace(core_config.ConfigWorkSpace[ConfigBasicFactory, Confi
|
||||
self._config_factory.log_format(log_format)
|
||||
self.store_config()
|
||||
|
||||
def clear(self):
|
||||
logger.info("Clear workspace config.")
|
||||
os.remove(self.workspace_config)
|
||||
|
||||
|
||||
config_basic_workspace: ConfigBasicWorkSpace = ConfigBasicWorkSpace()
|
||||
|
||||
@ -62,15 +62,13 @@ class ConfigWorkSpace(Generic[CF, F], ABC):
|
||||
self.workspace_config = os.path.join(self.workspace, "workspace_config.json")
|
||||
# 初始化工作空间配置,转换成json格式,实现Config的实例化
|
||||
|
||||
config_type_json = self._load_config()
|
||||
if config_type_json is None:
|
||||
_load_config = self._load_config()
|
||||
if _load_config is None:
|
||||
self._config_factory = self._build_config_factory(config_json={})
|
||||
self.store_config()
|
||||
|
||||
else:
|
||||
config_type = config_type_json.get("type", None)
|
||||
if self.get_type() != config_type:
|
||||
raise ValueError(f"Config type mismatch: {self.get_type()} != {config_type}")
|
||||
config_type_json = self.get_config_by_type(self.get_type())
|
||||
|
||||
config_json = config_type_json.get("config")
|
||||
self._config_factory = self._build_config_factory(config_json)
|
||||
@ -98,9 +96,39 @@ class ConfigWorkSpace(Generic[CF, F], ABC):
|
||||
except FileNotFoundError:
|
||||
return None
|
||||
|
||||
@staticmethod
|
||||
def _get_store_cfg_index_by_type(store_cfg, store_cfg_type) -> int:
|
||||
if store_cfg is None:
|
||||
raise RuntimeError("store_cfg is None.")
|
||||
for cfg in store_cfg:
|
||||
if cfg.get("type") == store_cfg_type:
|
||||
return store_cfg.index(cfg)
|
||||
|
||||
return -1
|
||||
|
||||
def get_config_by_type(self, cfg_type) -> Dict[str, Any]:
|
||||
store_cfg = self._load_config()
|
||||
if store_cfg is None:
|
||||
raise RuntimeError("store_cfg is None.")
|
||||
|
||||
get_lambda = lambda store_cfg_type: store_cfg[self._get_store_cfg_index_by_type(store_cfg, store_cfg_type)]
|
||||
return get_lambda(cfg_type)
|
||||
|
||||
def store_config(self):
|
||||
logger.info("Store workspace config.")
|
||||
_load_config = self._load_config()
|
||||
with open(self.workspace_config, "w") as f:
|
||||
config_json = self.get_config().to_dict()
|
||||
|
||||
if _load_config is None:
|
||||
_load_config = []
|
||||
config_json_index = self._get_store_cfg_index_by_type(
|
||||
store_cfg=_load_config,
|
||||
store_cfg_type=self.get_type()
|
||||
)
|
||||
config_type_json = {"type": self.get_type(), "config": config_json}
|
||||
f.write(json.dumps(config_type_json, indent=4, ensure_ascii=False))
|
||||
if config_json_index == -1:
|
||||
_load_config.append(config_type_json)
|
||||
else:
|
||||
_load_config[config_json_index] = config_type_json
|
||||
f.write(json.dumps(_load_config, indent=4, ensure_ascii=False))
|
||||
|
||||
@ -1,260 +1,450 @@
|
||||
import os
|
||||
import logging
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import Any, Optional, List, Dict
|
||||
|
||||
# 默认选用的 LLM 名称
|
||||
DEFAULT_LLM_MODEL = "chatglm3-6b"
|
||||
from dataclasses import dataclass
|
||||
|
||||
# 默认选用的 Embedding 名称
|
||||
DEFAULT_EMBEDDING_MODEL = "bge-large-zh-v1.5"
|
||||
sys.path.append(str(Path(__file__).parent))
|
||||
import _core_config as core_config
|
||||
|
||||
logger = logging.getLogger()
|
||||
|
||||
|
||||
# AgentLM模型的名称 (可以不指定,指定之后就锁定进入Agent之后的Chain的模型,不指定就是LLM_MODELS[0])
|
||||
Agent_MODEL = None
|
||||
class ConfigModel(core_config.Config):
|
||||
DEFAULT_LLM_MODEL: Optional[str] = None
|
||||
"""默认选用的 LLM 名称"""
|
||||
DEFAULT_EMBEDDING_MODEL: Optional[str] = None
|
||||
"""默认选用的 Embedding 名称"""
|
||||
Agent_MODEL: Optional[str] = None
|
||||
"""AgentLM模型的名称 (可以不指定,指定之后就锁定进入Agent之后的Chain的模型,不指定就是LLM_MODELS[0])"""
|
||||
HISTORY_LEN: Optional[int] = None
|
||||
"""历史对话轮数"""
|
||||
MAX_TOKENS: Optional[int] = None
|
||||
"""大模型最长支持的长度,如果不填写,则使用模型默认的最大长度,如果填写,则为用户设定的最大长度"""
|
||||
TEMPERATURE: Optional[float] = None
|
||||
"""LLM通用对话参数"""
|
||||
SUPPORT_AGENT_MODELS: Optional[List[str]] = None
|
||||
"""支持的Agent模型"""
|
||||
LLM_MODEL_CONFIG: Optional[Dict[str, Dict[str, Any]]] = None
|
||||
"""LLM模型配置,包括了不同模态初始化参数"""
|
||||
MODEL_PLATFORMS: Optional[List[Dict[str, Any]]] = None
|
||||
"""模型平台配置"""
|
||||
MODEL_PROVIDERS_CFG_PATH_CONFIG: Optional[str] = None
|
||||
"""模型平台配置文件路径"""
|
||||
MODEL_PROVIDERS_CFG_HOST: Optional[str] = None
|
||||
"""模型平台配置服务host"""
|
||||
MODEL_PROVIDERS_CFG_PORT: Optional[int] = None
|
||||
"""模型平台配置服务port"""
|
||||
TOOL_CONFIG: Optional[Dict[str, Any]] = None
|
||||
"""工具配置项"""
|
||||
|
||||
# 历史对话轮数
|
||||
HISTORY_LEN = 3
|
||||
@classmethod
|
||||
def class_name(cls) -> str:
|
||||
return cls.__name__
|
||||
|
||||
# 大模型最长支持的长度,如果不填写,则使用模型默认的最大长度,如果填写,则为用户设定的最大长度
|
||||
MAX_TOKENS = None
|
||||
|
||||
# LLM通用对话参数
|
||||
TEMPERATURE = 0.7
|
||||
# TOP_P = 0.95 # ChatOpenAI暂不支持该参数
|
||||
|
||||
SUPPORT_AGENT_MODELS = [
|
||||
"chatglm3-6b",
|
||||
"openai-api",
|
||||
"Qwen-14B-Chat",
|
||||
"Qwen-7B-Chat",
|
||||
"qwen-turbo",
|
||||
]
|
||||
def __str__(self):
|
||||
return self.to_json()
|
||||
|
||||
|
||||
LLM_MODEL_CONFIG = {
|
||||
# 意图识别不需要输出,模型后台知道就行
|
||||
"preprocess_model": {
|
||||
DEFAULT_LLM_MODEL: {
|
||||
"temperature": 0.05,
|
||||
"max_tokens": 4096,
|
||||
"history_len": 100,
|
||||
"prompt_name": "default",
|
||||
"callbacks": False
|
||||
},
|
||||
},
|
||||
"llm_model": {
|
||||
DEFAULT_LLM_MODEL: {
|
||||
"temperature": 0.9,
|
||||
"max_tokens": 4096,
|
||||
"history_len": 10,
|
||||
"prompt_name": "default",
|
||||
"callbacks": True
|
||||
},
|
||||
},
|
||||
"action_model": {
|
||||
DEFAULT_LLM_MODEL: {
|
||||
"temperature": 0.01,
|
||||
"max_tokens": 4096,
|
||||
"prompt_name": "ChatGLM3",
|
||||
"callbacks": True
|
||||
},
|
||||
},
|
||||
"postprocess_model": {
|
||||
DEFAULT_LLM_MODEL: {
|
||||
"temperature": 0.01,
|
||||
"max_tokens": 4096,
|
||||
"prompt_name": "default",
|
||||
"callbacks": True
|
||||
}
|
||||
},
|
||||
"image_model": {
|
||||
"sd-turbo": {
|
||||
"size": "256*256",
|
||||
}
|
||||
}
|
||||
}
|
||||
@dataclass
|
||||
class ConfigModelFactory(core_config.ConfigFactory[ConfigModel]):
|
||||
"""ConfigModel工厂类"""
|
||||
|
||||
# 可以通过 model_providers 提供转换不同平台的接口为openai endpoint的能力,启动后下面变量会自动增加相应的平台
|
||||
# ### 如果您已经有了一个openai endpoint的能力的地址,可以在这里直接配置
|
||||
# - platform_name 可以任意填写,不要重复即可
|
||||
# - platform_type 以后可能根据平台类型做一些功能区分,与platform_name一致即可
|
||||
# - 将框架部署的模型填写到对应列表即可。不同框架可以加载同名模型,项目会自动做负载均衡。
|
||||
def __init__(self):
|
||||
# 默认选用的 LLM 名称
|
||||
self.DEFAULT_LLM_MODEL = "chatglm3-6b"
|
||||
|
||||
# 默认选用的 Embedding 名称
|
||||
self.DEFAULT_EMBEDDING_MODEL = "bge-large-zh-v1.5"
|
||||
|
||||
# 创建一个全局的共享字典
|
||||
MODEL_PLATFORMS = [
|
||||
# AgentLM模型的名称 (可以不指定,指定之后就锁定进入Agent之后的Chain的模型,不指定就是LLM_MODELS[0])
|
||||
self.Agent_MODEL = None
|
||||
|
||||
{
|
||||
"platform_name": "oneapi",
|
||||
"platform_type": "oneapi",
|
||||
"api_base_url": "http://127.0.0.1:3000/v1",
|
||||
"api_key": "sk-",
|
||||
"api_concurrencies": 5,
|
||||
"llm_models": [
|
||||
# 智谱 API
|
||||
"chatglm_pro",
|
||||
"chatglm_turbo",
|
||||
"chatglm_std",
|
||||
"chatglm_lite",
|
||||
# 千问 API
|
||||
# 历史对话轮数
|
||||
self.HISTORY_LEN = 3
|
||||
|
||||
# 大模型最长支持的长度,如果不填写,则使用模型默认的最大长度,如果填写,则为用户设定的最大长度
|
||||
self.MAX_TOKENS = None
|
||||
|
||||
# LLM通用对话参数
|
||||
self.TEMPERATURE = 0.7
|
||||
# TOP_P = 0.95 # ChatOpenAI暂不支持该参数
|
||||
|
||||
self.SUPPORT_AGENT_MODELS = [
|
||||
"chatglm3-6b",
|
||||
"openai-api",
|
||||
"Qwen-14B-Chat",
|
||||
"Qwen-7B-Chat",
|
||||
"qwen-turbo",
|
||||
"qwen-plus",
|
||||
"qwen-max",
|
||||
"qwen-max-longcontext",
|
||||
# 千帆 API
|
||||
"ERNIE-Bot",
|
||||
"ERNIE-Bot-turbo",
|
||||
"ERNIE-Bot-4",
|
||||
# 星火 API
|
||||
"SparkDesk",
|
||||
],
|
||||
"embed_models": [
|
||||
# 千问 API
|
||||
"text-embedding-v1",
|
||||
# 千帆 API
|
||||
"Embedding-V1",
|
||||
],
|
||||
"image_models": [],
|
||||
"reranking_models": [],
|
||||
"speech2text_models": [],
|
||||
"tts_models": [],
|
||||
},
|
||||
]
|
||||
|
||||
{
|
||||
"platform_name": "xinference",
|
||||
"platform_type": "xinference",
|
||||
"api_base_url": "http://127.0.0.1:9997/v1",
|
||||
"api_key": "EMPTY",
|
||||
"api_concurrencies": 5,
|
||||
"llm_models": [
|
||||
"glm-4",
|
||||
"qwen2-instruct",
|
||||
"qwen1.5-chat",
|
||||
],
|
||||
"embed_models": [
|
||||
"bge-large-zh-v1.5",
|
||||
],
|
||||
"image_models": [],
|
||||
"reranking_models": [],
|
||||
"speech2text_models": [],
|
||||
"tts_models": [],
|
||||
},
|
||||
self.MODEL_PROVIDERS_CFG_PATH_CONFIG = os.path.join(os.path.dirname(os.path.abspath(__file__)),
|
||||
"model_providers.yaml")
|
||||
self.MODEL_PROVIDERS_CFG_HOST = "127.0.0.1"
|
||||
|
||||
]
|
||||
self.MODEL_PROVIDERS_CFG_PORT = 20000
|
||||
|
||||
MODEL_PROVIDERS_CFG_PATH_CONFIG = os.path.join(os.path.dirname(os.path.abspath(__file__)), "model_providers.yaml")
|
||||
MODEL_PROVIDERS_CFG_HOST = "127.0.0.1"
|
||||
self._init_llm_work_config()
|
||||
|
||||
MODEL_PROVIDERS_CFG_PORT = 20000
|
||||
# 工具配置项
|
||||
TOOL_CONFIG = {
|
||||
"search_local_knowledgebase": {
|
||||
"use": False,
|
||||
"top_k": 3,
|
||||
"score_threshold": 1.0,
|
||||
"conclude_prompt": {
|
||||
"with_result":
|
||||
'<指令>根据已知信息,简洁和专业的来回答问题。如果无法从中得到答案,请说 "根据已知信息无法回答该问题",'
|
||||
'不允许在答案中添加编造成分,答案请使用中文。 </指令>\n'
|
||||
'<已知信息>{{ context }}</已知信息>\n'
|
||||
'<问题>{{ question }}</问题>\n',
|
||||
"without_result":
|
||||
'请你根据我的提问回答我的问题:\n'
|
||||
'{{ question }}\n'
|
||||
'请注意,你必须在回答结束后强调,你的回答是根据你的经验回答而不是参考资料回答的。\n',
|
||||
}
|
||||
},
|
||||
"search_internet": {
|
||||
"use": False,
|
||||
"search_engine_name": "bing",
|
||||
"search_engine_config":
|
||||
{
|
||||
"bing": {
|
||||
"result_len": 3,
|
||||
"bing_search_url": "https://api.bing.microsoft.com/v7.0/search",
|
||||
"bing_key": "",
|
||||
def _init_llm_work_config(self):
|
||||
"""初始化知识库runtime的一些配置"""
|
||||
|
||||
self.LLM_MODEL_CONFIG = {
|
||||
# 意图识别不需要输出,模型后台知道就行
|
||||
"preprocess_model": {
|
||||
self.DEFAULT_LLM_MODEL: {
|
||||
"temperature": 0.05,
|
||||
"max_tokens": 4096,
|
||||
"history_len": 100,
|
||||
"prompt_name": "default",
|
||||
"callbacks": False
|
||||
},
|
||||
"metaphor": {
|
||||
"result_len": 3,
|
||||
"metaphor_api_key": "",
|
||||
"split_result": False,
|
||||
"chunk_size": 500,
|
||||
"chunk_overlap": 0,
|
||||
},
|
||||
"llm_model": {
|
||||
self.DEFAULT_LLM_MODEL: {
|
||||
"temperature": 0.9,
|
||||
"max_tokens": 4096,
|
||||
"history_len": 10,
|
||||
"prompt_name": "default",
|
||||
"callbacks": True
|
||||
},
|
||||
"duckduckgo": {
|
||||
"result_len": 3
|
||||
},
|
||||
"action_model": {
|
||||
self.DEFAULT_LLM_MODEL: {
|
||||
"temperature": 0.01,
|
||||
"max_tokens": 4096,
|
||||
"prompt_name": "ChatGLM3",
|
||||
"callbacks": True
|
||||
},
|
||||
},
|
||||
"postprocess_model": {
|
||||
self.DEFAULT_LLM_MODEL: {
|
||||
"temperature": 0.01,
|
||||
"max_tokens": 4096,
|
||||
"prompt_name": "default",
|
||||
"callbacks": True
|
||||
}
|
||||
},
|
||||
"top_k": 10,
|
||||
"verbose": "Origin",
|
||||
"conclude_prompt":
|
||||
"<指令>这是搜索到的互联网信息,请你根据这些信息进行提取并有调理,简洁的回答问题。如果无法从中得到答案,请说 “无法搜索到能回答问题的内容”。 "
|
||||
"</指令>\n<已知信息>{{ context }}</已知信息>\n"
|
||||
"<问题>\n"
|
||||
"{{ question }}\n"
|
||||
"</问题>\n"
|
||||
},
|
||||
"arxiv": {
|
||||
"use": False,
|
||||
},
|
||||
"shell": {
|
||||
"use": False,
|
||||
},
|
||||
"weather_check": {
|
||||
"use": False,
|
||||
"api_key": "S8vrB4U_-c5mvAMiK",
|
||||
},
|
||||
"search_youtube": {
|
||||
"use": False,
|
||||
},
|
||||
"wolfram": {
|
||||
"use": False,
|
||||
"appid": "",
|
||||
},
|
||||
"calculate": {
|
||||
"use": False,
|
||||
},
|
||||
"vqa_processor": {
|
||||
"use": False,
|
||||
"model_path": "your model path",
|
||||
"tokenizer_path": "your tokenizer path",
|
||||
"device": "cuda:1"
|
||||
},
|
||||
"aqa_processor": {
|
||||
"use": False,
|
||||
"model_path": "your model path",
|
||||
"tokenizer_path": "yout tokenizer path",
|
||||
"device": "cuda:2"
|
||||
},
|
||||
"text2images": {
|
||||
"use": False,
|
||||
},
|
||||
# text2sql使用建议
|
||||
# 1、因大模型生成的sql可能与预期有偏差,请务必在测试环境中进行充分测试、评估;
|
||||
# 2、生产环境中,对于查询操作,由于不确定查询效率,推荐数据库采用主从数据库架构,让text2sql连接从数据库,防止可能的慢查询影响主业务;
|
||||
# 3、对于写操作应保持谨慎,如不需要写操作,设置read_only为True,最好再从数据库层面收回数据库用户的写权限,防止用户通过自然语言对数据库进行修改操作;
|
||||
# 4、text2sql与大模型在意图理解、sql转换等方面的能力有关,可切换不同大模型进行测试;
|
||||
# 5、数据库表名、字段名应与其实际作用保持一致、容易理解,且应对数据库表名、字段进行详细的备注说明,帮助大模型更好理解数据库结构;
|
||||
# 6、若现有数据库表名难于让大模型理解,可配置下面table_comments字段,补充说明某些表的作用。
|
||||
"text2sql": {
|
||||
"use": False,
|
||||
# SQLAlchemy连接字符串,支持的数据库有:
|
||||
# crate、duckdb、googlesql、mssql、mysql、mariadb、oracle、postgresql、sqlite、clickhouse、prestodb
|
||||
# 不同的数据库请查询SQLAlchemy,修改sqlalchemy_connect_str,配置对应的数据库连接,如sqlite为sqlite:///数据库文件路径,下面示例为mysql
|
||||
# 如提示缺少对应数据库的驱动,请自行通过poetry安装
|
||||
"sqlalchemy_connect_str": "mysql+pymysql://用户名:密码@主机地址/数据库名称e",
|
||||
# 务必评估是否需要开启read_only,开启后会对sql语句进行检查,请确认text2sql.py中的intercept_sql拦截器是否满足你使用的数据库只读要求
|
||||
# 优先推荐从数据库层面对用户权限进行限制
|
||||
"read_only": False,
|
||||
#限定返回的行数
|
||||
"top_k":50,
|
||||
#是否返回中间步骤
|
||||
"return_intermediate_steps": True,
|
||||
#如果想指定特定表,请填写表名称,如["sys_user","sys_dept"],不填写走智能判断应该使用哪些表
|
||||
"table_names":[],
|
||||
#对表名进行额外说明,辅助大模型更好的判断应该使用哪些表,尤其是SQLDatabaseSequentialChain模式下,是根据表名做的预测,很容易误判。
|
||||
"table_comments":{
|
||||
# 如果出现大模型选错表的情况,可尝试根据实际情况填写表名和说明
|
||||
# "tableA":"这是一个用户表,存储了用户的基本信息",
|
||||
# "tanleB":"角色表",
|
||||
"image_model": {
|
||||
"sd-turbo": {
|
||||
"size": "256*256",
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
}
|
||||
|
||||
# 可以通过 model_providers 提供转换不同平台的接口为openai endpoint的能力,启动后下面变量会自动增加相应的平台
|
||||
# ### 如果您已经有了一个openai endpoint的能力的地址,可以在这里直接配置
|
||||
# - platform_name 可以任意填写,不要重复即可
|
||||
# - platform_type 以后可能根据平台类型做一些功能区分,与platform_name一致即可
|
||||
# - 将框架部署的模型填写到对应列表即可。不同框架可以加载同名模型,项目会自动做负载均衡。
|
||||
|
||||
# 创建一个全局的共享字典
|
||||
self.MODEL_PLATFORMS = [
|
||||
|
||||
{
|
||||
"platform_name": "oneapi",
|
||||
"platform_type": "oneapi",
|
||||
"api_base_url": "http://127.0.0.1:3000/v1",
|
||||
"api_key": "sk-",
|
||||
"api_concurrencies": 5,
|
||||
"llm_models": [
|
||||
# 智谱 API
|
||||
"chatglm_pro",
|
||||
"chatglm_turbo",
|
||||
"chatglm_std",
|
||||
"chatglm_lite",
|
||||
# 千问 API
|
||||
"qwen-turbo",
|
||||
"qwen-plus",
|
||||
"qwen-max",
|
||||
"qwen-max-longcontext",
|
||||
# 千帆 API
|
||||
"ERNIE-Bot",
|
||||
"ERNIE-Bot-turbo",
|
||||
"ERNIE-Bot-4",
|
||||
# 星火 API
|
||||
"SparkDesk",
|
||||
],
|
||||
"embed_models": [
|
||||
# 千问 API
|
||||
"text-embedding-v1",
|
||||
# 千帆 API
|
||||
"Embedding-V1",
|
||||
],
|
||||
"image_models": [],
|
||||
"reranking_models": [],
|
||||
"speech2text_models": [],
|
||||
"tts_models": [],
|
||||
},
|
||||
|
||||
{
|
||||
"platform_name": "xinference",
|
||||
"platform_type": "xinference",
|
||||
"api_base_url": "http://127.0.0.1:9997/v1",
|
||||
"api_key": "EMPTY",
|
||||
"api_concurrencies": 5,
|
||||
"llm_models": [
|
||||
"glm-4",
|
||||
"qwen2-instruct",
|
||||
"qwen1.5-chat",
|
||||
],
|
||||
"embed_models": [
|
||||
"bge-large-zh-v1.5",
|
||||
],
|
||||
"image_models": [],
|
||||
"reranking_models": [],
|
||||
"speech2text_models": [],
|
||||
"tts_models": [],
|
||||
},
|
||||
|
||||
]
|
||||
# 工具配置项
|
||||
self.TOOL_CONFIG = {
|
||||
"search_local_knowledgebase": {
|
||||
"use": False,
|
||||
"top_k": 3,
|
||||
"score_threshold": 1.0,
|
||||
"conclude_prompt": {
|
||||
"with_result":
|
||||
'<指令>根据已知信息,简洁和专业的来回答问题。如果无法从中得到答案,请说 "根据已知信息无法回答该问题",'
|
||||
'不允许在答案中添加编造成分,答案请使用中文。 </指令>\n'
|
||||
'<已知信息>{{ context }}</已知信息>\n'
|
||||
'<问题>{{ question }}</问题>\n',
|
||||
"without_result":
|
||||
'请你根据我的提问回答我的问题:\n'
|
||||
'{{ question }}\n'
|
||||
'请注意,你必须在回答结束后强调,你的回答是根据你的经验回答而不是参考资料回答的。\n',
|
||||
}
|
||||
},
|
||||
"search_internet": {
|
||||
"use": False,
|
||||
"search_engine_name": "bing",
|
||||
"search_engine_config":
|
||||
{
|
||||
"bing": {
|
||||
"result_len": 3,
|
||||
"bing_search_url": "https://api.bing.microsoft.com/v7.0/search",
|
||||
"bing_key": "",
|
||||
},
|
||||
"metaphor": {
|
||||
"result_len": 3,
|
||||
"metaphor_api_key": "",
|
||||
"split_result": False,
|
||||
"chunk_size": 500,
|
||||
"chunk_overlap": 0,
|
||||
},
|
||||
"duckduckgo": {
|
||||
"result_len": 3
|
||||
}
|
||||
},
|
||||
"top_k": 10,
|
||||
"verbose": "Origin",
|
||||
"conclude_prompt":
|
||||
"<指令>这是搜索到的互联网信息,请你根据这些信息进行提取并有调理,简洁的回答问题。如果无法从中得到答案,请说 “无法搜索到能回答问题的内容”。 "
|
||||
"</指令>\n<已知信息>{{ context }}</已知信息>\n"
|
||||
"<问题>\n"
|
||||
"{{ question }}\n"
|
||||
"</问题>\n"
|
||||
},
|
||||
"arxiv": {
|
||||
"use": False,
|
||||
},
|
||||
"shell": {
|
||||
"use": False,
|
||||
},
|
||||
"weather_check": {
|
||||
"use": False,
|
||||
"api_key": "S8vrB4U_-c5mvAMiK",
|
||||
},
|
||||
"search_youtube": {
|
||||
"use": False,
|
||||
},
|
||||
"wolfram": {
|
||||
"use": False,
|
||||
"appid": "",
|
||||
},
|
||||
"calculate": {
|
||||
"use": False,
|
||||
},
|
||||
"vqa_processor": {
|
||||
"use": False,
|
||||
"model_path": "your model path",
|
||||
"tokenizer_path": "your tokenizer path",
|
||||
"device": "cuda:1"
|
||||
},
|
||||
"aqa_processor": {
|
||||
"use": False,
|
||||
"model_path": "your model path",
|
||||
"tokenizer_path": "yout tokenizer path",
|
||||
"device": "cuda:2"
|
||||
},
|
||||
"text2images": {
|
||||
"use": False,
|
||||
},
|
||||
# text2sql使用建议
|
||||
# 1、因大模型生成的sql可能与预期有偏差,请务必在测试环境中进行充分测试、评估;
|
||||
# 2、生产环境中,对于查询操作,由于不确定查询效率,推荐数据库采用主从数据库架构,让text2sql连接从数据库,防止可能的慢查询影响主业务;
|
||||
# 3、对于写操作应保持谨慎,如不需要写操作,设置read_only为True,最好再从数据库层面收回数据库用户的写权限,防止用户通过自然语言对数据库进行修改操作;
|
||||
# 4、text2sql与大模型在意图理解、sql转换等方面的能力有关,可切换不同大模型进行测试;
|
||||
# 5、数据库表名、字段名应与其实际作用保持一致、容易理解,且应对数据库表名、字段进行详细的备注说明,帮助大模型更好理解数据库结构;
|
||||
# 6、若现有数据库表名难于让大模型理解,可配置下面table_comments字段,补充说明某些表的作用。
|
||||
"text2sql": {
|
||||
"use": False,
|
||||
# SQLAlchemy连接字符串,支持的数据库有:
|
||||
# crate、duckdb、googlesql、mssql、mysql、mariadb、oracle、postgresql、sqlite、clickhouse、prestodb
|
||||
# 不同的数据库请查询SQLAlchemy,修改sqlalchemy_connect_str,配置对应的数据库连接,如sqlite为sqlite:///数据库文件路径,下面示例为mysql
|
||||
# 如提示缺少对应数据库的驱动,请自行通过poetry安装
|
||||
"sqlalchemy_connect_str": "mysql+pymysql://用户名:密码@主机地址/数据库名称e",
|
||||
# 务必评估是否需要开启read_only,开启后会对sql语句进行检查,请确认text2sql.py中的intercept_sql拦截器是否满足你使用的数据库只读要求
|
||||
# 优先推荐从数据库层面对用户权限进行限制
|
||||
"read_only": False,
|
||||
# 限定返回的行数
|
||||
"top_k": 50,
|
||||
# 是否返回中间步骤
|
||||
"return_intermediate_steps": True,
|
||||
# 如果想指定特定表,请填写表名称,如["sys_user","sys_dept"],不填写走智能判断应该使用哪些表
|
||||
"table_names": [],
|
||||
# 对表名进行额外说明,辅助大模型更好的判断应该使用哪些表,尤其是SQLDatabaseSequentialChain模式下,是根据表名做的预测,很容易误判。
|
||||
"table_comments": {
|
||||
# 如果出现大模型选错表的情况,可尝试根据实际情况填写表名和说明
|
||||
# "tableA":"这是一个用户表,存储了用户的基本信息",
|
||||
# "tanleB":"角色表",
|
||||
}
|
||||
},
|
||||
}
|
||||
|
||||
def default_llm_model(self, llm_model: str):
|
||||
self.DEFAULT_LLM_MODEL = llm_model
|
||||
|
||||
def default_embedding_model(self, embedding_model: str):
|
||||
self.DEFAULT_EMBEDDING_MODEL = embedding_model
|
||||
|
||||
def agent_model(self, agent_model: str):
|
||||
self.Agent_MODEL = agent_model
|
||||
|
||||
def history_len(self, history_len: int):
|
||||
self.HISTORY_LEN = history_len
|
||||
|
||||
def max_tokens(self, max_tokens: int):
|
||||
self.MAX_TOKENS = max_tokens
|
||||
|
||||
def temperature(self, temperature: float):
|
||||
self.TEMPERATURE = temperature
|
||||
|
||||
def support_agent_models(self, support_agent_models: List[str]):
|
||||
self.SUPPORT_AGENT_MODELS = support_agent_models
|
||||
|
||||
def model_providers_cfg_path_config(self, model_providers_cfg_path_config: str):
|
||||
self.MODEL_PROVIDERS_CFG_PATH_CONFIG = model_providers_cfg_path_config
|
||||
|
||||
def model_providers_cfg_host(self, model_providers_cfg_host: str):
|
||||
self.MODEL_PROVIDERS_CFG_HOST = model_providers_cfg_host
|
||||
|
||||
def model_providers_cfg_port(self, model_providers_cfg_port: int):
|
||||
self.MODEL_PROVIDERS_CFG_PORT = model_providers_cfg_port
|
||||
|
||||
def get_config(self) -> ConfigModel:
|
||||
config = ConfigModel()
|
||||
config.DEFAULT_LLM_MODEL = self.DEFAULT_LLM_MODEL
|
||||
config.DEFAULT_EMBEDDING_MODEL = self.DEFAULT_EMBEDDING_MODEL
|
||||
config.Agent_MODEL = self.Agent_MODEL
|
||||
config.HISTORY_LEN = self.HISTORY_LEN
|
||||
config.MAX_TOKENS = self.MAX_TOKENS
|
||||
config.TEMPERATURE = self.TEMPERATURE
|
||||
config.SUPPORT_AGENT_MODELS = self.SUPPORT_AGENT_MODELS
|
||||
config.LLM_MODEL_CONFIG = self.LLM_MODEL_CONFIG
|
||||
config.MODEL_PLATFORMS = self.MODEL_PLATFORMS
|
||||
config.MODEL_PROVIDERS_CFG_PATH_CONFIG = self.MODEL_PROVIDERS_CFG_PATH_CONFIG
|
||||
config.MODEL_PROVIDERS_CFG_HOST = self.MODEL_PROVIDERS_CFG_HOST
|
||||
config.MODEL_PROVIDERS_CFG_PORT = self.MODEL_PROVIDERS_CFG_PORT
|
||||
config.TOOL_CONFIG = self.TOOL_CONFIG
|
||||
|
||||
return config
|
||||
|
||||
|
||||
class ConfigModelWorkSpace(core_config.ConfigWorkSpace[ConfigModelFactory, ConfigModel]):
|
||||
"""
|
||||
工作空间的配置预设, 提供ConfigModel建造方法产生实例。
|
||||
"""
|
||||
config_factory_cls = ConfigModelFactory
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def _build_config_factory(self, config_json: Any) -> ConfigModelFactory:
|
||||
|
||||
_config_factory = self.config_factory_cls()
|
||||
if config_json.get("DEFAULT_LLM_MODEL"):
|
||||
_config_factory.default_llm_model(config_json.get("DEFAULT_LLM_MODEL"))
|
||||
if config_json.get("DEFAULT_EMBEDDING_MODEL"):
|
||||
_config_factory.default_embedding_model(config_json.get("DEFAULT_EMBEDDING_MODEL"))
|
||||
if config_json.get("Agent_MODEL"):
|
||||
_config_factory.agent_model(config_json.get("Agent_MODEL"))
|
||||
if config_json.get("HISTORY_LEN"):
|
||||
_config_factory.history_len(config_json.get("HISTORY_LEN"))
|
||||
if config_json.get("MAX_TOKENS"):
|
||||
_config_factory.max_tokens(config_json.get("MAX_TOKENS"))
|
||||
if config_json.get("TEMPERATURE"):
|
||||
_config_factory.temperature(config_json.get("TEMPERATURE"))
|
||||
if config_json.get("SUPPORT_AGENT_MODELS"):
|
||||
_config_factory.support_agent_models(config_json.get("SUPPORT_AGENT_MODELS"))
|
||||
if config_json.get("MODEL_PROVIDERS_CFG_PATH_CONFIG"):
|
||||
_config_factory.model_providers_cfg_path_config(config_json.get("MODEL_PROVIDERS_CFG_PATH_CONFIG"))
|
||||
if config_json.get("MODEL_PROVIDERS_CFG_HOST"):
|
||||
_config_factory.model_providers_cfg_host(config_json.get("MODEL_PROVIDERS_CFG_HOST"))
|
||||
if config_json.get("MODEL_PROVIDERS_CFG_PORT"):
|
||||
_config_factory.model_providers_cfg_port(config_json.get("MODEL_PROVIDERS_CFG_PORT"))
|
||||
|
||||
return _config_factory
|
||||
|
||||
@classmethod
|
||||
def get_type(cls) -> str:
|
||||
return ConfigModel.class_name()
|
||||
|
||||
def get_config(self) -> ConfigModel:
|
||||
return self._config_factory.get_config()
|
||||
|
||||
def set_default_llm_model(self, llm_model: str):
|
||||
self._config_factory.default_llm_model(llm_model)
|
||||
self.store_config()
|
||||
|
||||
def set_default_embedding_model(self, embedding_model: str):
|
||||
self._config_factory.default_embedding_model(embedding_model)
|
||||
self.store_config()
|
||||
|
||||
def set_agent_model(self, agent_model: str):
|
||||
self._config_factory.agent_model(agent_model)
|
||||
self.store_config()
|
||||
|
||||
def set_history_len(self, history_len: int):
|
||||
self._config_factory.history_len(history_len)
|
||||
self.store_config()
|
||||
|
||||
def set_max_tokens(self, max_tokens: int):
|
||||
self._config_factory.max_tokens(max_tokens)
|
||||
self.store_config()
|
||||
|
||||
def set_temperature(self, temperature: float):
|
||||
self._config_factory.temperature(temperature)
|
||||
self.store_config()
|
||||
|
||||
def set_support_agent_models(self, support_agent_models: List[str]):
|
||||
self._config_factory.support_agent_models(support_agent_models)
|
||||
self.store_config()
|
||||
|
||||
def set_model_providers_cfg_path_config(self, model_providers_cfg_path_config: str):
|
||||
self._config_factory.model_providers_cfg_path_config(model_providers_cfg_path_config)
|
||||
self.store_config()
|
||||
|
||||
def set_model_providers_cfg_host(self, model_providers_cfg_host: str):
|
||||
self._config_factory.model_providers_cfg_host(model_providers_cfg_host)
|
||||
self.store_config()
|
||||
|
||||
def set_model_providers_cfg_port(self, model_providers_cfg_port: int):
|
||||
self._config_factory.model_providers_cfg_port(model_providers_cfg_port)
|
||||
self.store_config()
|
||||
|
||||
|
||||
config_model_workspace: ConfigModelWorkSpace = ConfigModelWorkSpace()
|
||||
@ -1,6 +1,6 @@
|
||||
[tool.poetry]
|
||||
name = "langchain-chatchat"
|
||||
version = "0.3.0.20240610.1"
|
||||
version = "0.3.0.20240611"
|
||||
description = ""
|
||||
authors = ["chatchat"]
|
||||
readme = "README.md"
|
||||
|
||||
@ -1,6 +1,12 @@
|
||||
from pathlib import Path
|
||||
|
||||
from chatchat.configs import ConfigBasicFactory, ConfigBasic, ConfigBasicWorkSpace
|
||||
from chatchat.configs import (
|
||||
ConfigBasicFactory,
|
||||
ConfigBasic,
|
||||
ConfigBasicWorkSpace,
|
||||
ConfigModelWorkSpace,
|
||||
ConfigModel
|
||||
)
|
||||
import os
|
||||
|
||||
|
||||
@ -36,3 +42,56 @@ def test_workspace_default():
|
||||
assert LOG_FORMAT is not None
|
||||
assert LOG_PATH is not None
|
||||
assert MEDIA_PATH is not None
|
||||
|
||||
|
||||
def test_config_model_workspace():
|
||||
|
||||
config_model_workspace: ConfigModelWorkSpace = ConfigModelWorkSpace()
|
||||
|
||||
assert config_model_workspace.get_config() is not None
|
||||
|
||||
config_model_workspace.set_default_llm_model(llm_model="glm4")
|
||||
config_model_workspace.set_default_embedding_model(embedding_model="text1")
|
||||
config_model_workspace.set_agent_model(agent_model="agent")
|
||||
config_model_workspace.set_history_len(history_len=1)
|
||||
config_model_workspace.set_max_tokens(max_tokens=1000)
|
||||
config_model_workspace.set_temperature(temperature=0.1)
|
||||
config_model_workspace.set_support_agent_models(support_agent_models=["glm4"])
|
||||
config_model_workspace.set_model_providers_cfg_path_config(model_providers_cfg_path_config="model_providers.yaml")
|
||||
config_model_workspace.set_model_providers_cfg_host(model_providers_cfg_host="127.0.0.1")
|
||||
config_model_workspace.set_model_providers_cfg_port(model_providers_cfg_port=8000)
|
||||
|
||||
config: ConfigModel = config_model_workspace.get_config()
|
||||
|
||||
assert config.DEFAULT_LLM_MODEL == "glm4"
|
||||
assert config.DEFAULT_EMBEDDING_MODEL == "text1"
|
||||
assert config.Agent_MODEL == "agent"
|
||||
assert config.HISTORY_LEN == 1
|
||||
assert config.MAX_TOKENS == 1000
|
||||
assert config.TEMPERATURE == 0.1
|
||||
assert config.SUPPORT_AGENT_MODELS == ["glm4"]
|
||||
assert config.MODEL_PROVIDERS_CFG_PATH_CONFIG == "model_providers.yaml"
|
||||
assert config.MODEL_PROVIDERS_CFG_HOST == "127.0.0.1"
|
||||
assert config.MODEL_PROVIDERS_CFG_PORT == 8000
|
||||
config_model_workspace.clear()
|
||||
|
||||
|
||||
def test_model_config():
|
||||
from chatchat.configs import (
|
||||
DEFAULT_LLM_MODEL, DEFAULT_EMBEDDING_MODEL, Agent_MODEL, HISTORY_LEN, MAX_TOKENS, TEMPERATURE,
|
||||
SUPPORT_AGENT_MODELS, MODEL_PROVIDERS_CFG_PATH_CONFIG, MODEL_PROVIDERS_CFG_HOST, MODEL_PROVIDERS_CFG_PORT,
|
||||
TOOL_CONFIG, MODEL_PLATFORMS, LLM_MODEL_CONFIG
|
||||
)
|
||||
assert DEFAULT_LLM_MODEL is not None
|
||||
assert DEFAULT_EMBEDDING_MODEL is not None
|
||||
assert Agent_MODEL is None
|
||||
assert HISTORY_LEN is not None
|
||||
assert MAX_TOKENS is None
|
||||
assert TEMPERATURE is not None
|
||||
assert SUPPORT_AGENT_MODELS is not None
|
||||
assert MODEL_PROVIDERS_CFG_PATH_CONFIG is not None
|
||||
assert MODEL_PROVIDERS_CFG_HOST is not None
|
||||
assert MODEL_PROVIDERS_CFG_PORT is not None
|
||||
assert TOOL_CONFIG is not None
|
||||
assert MODEL_PLATFORMS is not None
|
||||
assert LLM_MODEL_CONFIG is not None
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user