Merge pull request #2746 from zRzRzRzRzRzRzR/dev

支持GLM4
This commit is contained in:
zR 2024-01-22 11:48:43 +08:00 committed by GitHub
commit c0968fb581
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
13 changed files with 179 additions and 279 deletions

View File

@ -6,9 +6,9 @@ import os
MODEL_ROOT_PATH = ""
# 选用的 Embedding 名称
EMBEDDING_MODEL = "bge-large-zh"
EMBEDDING_MODEL = "bge-large-zh-v1.5"
# Embedding 模型运行设备。设为"auto"会自动检测,也可手动设定为"cuda","mps","cpu"其中之一。
# Embedding 模型运行设备。设为"auto"会自动检测(会有警告),也可手动设定为 "cuda","mps","cpu","xpu" 其中之一。
EMBEDDING_DEVICE = "auto"
# 选用的reranker模型
@ -26,50 +26,33 @@ EMBEDDING_MODEL_OUTPUT_PATH = "output"
# 在这里我们使用目前主流的两个离线模型其中chatglm3-6b 为默认加载模型。
# 如果你的显存不足,可使用 Qwen-1_8B-Chat, 该模型 FP16 仅需 3.8G显存。
# chatglm3-6b输出角色标签<|user|>及自问自答的问题详见项目wiki->常见问题->Q20.
LLM_MODELS = ["chatglm3-6b", "zhipu-api", "openai-api"] # "Qwen-1_8B-Chat",
# AgentLM模型的名称 (可以不指定指定之后就锁定进入Agent之后的Chain的模型不指定就是LLM_MODELS[0])
LLM_MODELS = ["zhipu-api"]
Agent_MODEL = None
# LLM 运行设备。设为"auto"会自动检测,也可手动设定为"cuda","mps","cpu"其中之一。
LLM_DEVICE = "auto"
# LLM 模型运行设备。设为"auto"会自动检测(会有警告),也可手动设定为 "cuda","mps","cpu","xpu" 其中之一。
LLM_DEVICE = "cuda"
# 历史对话轮数
HISTORY_LEN = 3
# 大模型最长支持的长度,如果不填写,则使用模型默认的最大长度,如果填写,则为用户设定的最大长度
MAX_TOKENS = None
MAX_TOKENS = 2048
# LLM通用对话参数
TEMPERATURE = 0.7
# TOP_P = 0.95 # ChatOpenAI暂不支持该参数
ONLINE_LLM_MODEL = {
# 线上模型。请在server_config中为每个在线API设置不同的端口
"openai-api": {
"model_name": "gpt-3.5-turbo",
"model_name": "gpt-4",
"api_base_url": "https://api.openai.com/v1",
"api_key": "",
"openai_proxy": "",
},
# 获取api_key请前往https://makersuite.google.com/或者google cloud使用前先确认网络正常使用代理请在项目启动python startup.py -a)环境内设置https_proxy环境变量
"gemini-api": {
"api_key": "",
"provider": "GeminiWorker",
},
# 具体注册及api key获取请前往 http://open.bigmodel.cn
# 智谱AI API,具体注册及api key获取请前往 http://open.bigmodel.cn
"zhipu-api": {
"api_key": "",
"version": "chatglm_turbo", # 可选包括 "chatglm_turbo"
"version": "glm-4",
"provider": "ChatGLMWorker",
},
# 具体注册及api key获取请前往 https://api.minimax.chat/
"minimax-api": {
"group_id": "",
@ -78,7 +61,6 @@ ONLINE_LLM_MODEL = {
"provider": "MiniMaxWorker",
},
# 具体注册及api key获取请前往 https://xinghuo.xfyun.cn/
"xinghuo-api": {
"APPID": "",
@ -99,8 +81,8 @@ ONLINE_LLM_MODEL = {
# 火山方舟 API文档参考 https://www.volcengine.com/docs/82379
"fangzhou-api": {
"version": "chatglm-6b-model", # 当前支持 "chatglm-6b-model" 更多的见文档模型支持列表中方舟部分。
"version_url": "", # 可以不填写version直接填写在方舟申请模型发布的API地址
"version": "chatglm-6b-model",
"version_url": "",
"api_key": "",
"secret_key": "",
"provider": "FangZhouWorker",
@ -108,15 +90,15 @@ ONLINE_LLM_MODEL = {
# 阿里云通义千问 API文档参考 https://help.aliyun.com/zh/dashscope/developer-reference/api-details
"qwen-api": {
"version": "qwen-turbo", # 可选包括 "qwen-turbo", "qwen-plus"
"api_key": "", # 请在阿里云控制台模型服务灵积API-KEY管理页面创建
"version": "qwen-max",
"api_key": "",
"provider": "QwenWorker",
"embed_model": "text-embedding-v1" # embedding 模型名称
"embed_model": "text-embedding-v1" # embedding 模型名称
},
# 百川 API申请方式请参考 https://www.baichuan-ai.com/home#api-enter
"baichuan-api": {
"version": "Baichuan2-53B", # 当前支持 "Baichuan2-53B" 见官方文档。
"version": "Baichuan2-53B",
"api_key": "",
"secret_key": "",
"provider": "BaiChuanWorker",
@ -138,6 +120,11 @@ ONLINE_LLM_MODEL = {
"secret_key": "",
"provider": "TianGongWorker",
},
# Gemini API (开发组未测试由社群提供只支持prohttps://makersuite.google.com/或者google cloud使用前先确认网络正常使用代理请在项目启动python startup.py -a)环境内设置https_proxy环境变量
"gemini-api": {
"api_key": "",
"provider": "GeminiWorker",
}
}
@ -149,6 +136,7 @@ ONLINE_LLM_MODEL = {
# - GanymedeNil/text2vec-large-chinese
# - text2vec-large-chinese
# 2.2 如果以上本地路径不存在则使用huggingface模型
MODEL_PATH = {
"embed_model": {
"ernie-tiny": "nghuyong/ernie-3.0-nano-zh",
@ -167,7 +155,7 @@ MODEL_PATH = {
"bge-large-zh": "BAAI/bge-large-zh",
"bge-large-zh-noinstruct": "BAAI/bge-large-zh-noinstruct",
"bge-base-zh-v1.5": "BAAI/bge-base-zh-v1.5",
"bge-large-zh-v1.5": "BAAI/bge-large-zh-v1.5",
"bge-large-zh-v1.5": "/share/home/zyx/Models/bge-large-zh-v1.5",
"piccolo-base-zh": "sensenova/piccolo-base-zh",
"piccolo-large-zh": "sensenova/piccolo-large-zh",
"nlp_gte_sentence-embedding_chinese-large": "damo/nlp_gte_sentence-embedding_chinese-large",
@ -175,55 +163,55 @@ MODEL_PATH = {
},
"llm_model": {
# 以下部分模型并未完全测试仅根据fastchat和vllm模型的模型列表推定支持
"chatglm2-6b": "THUDM/chatglm2-6b",
"chatglm2-6b-32k": "THUDM/chatglm2-6b-32k",
"chatglm3-6b": "THUDM/chatglm3-6b",
"chatglm3-6b-32k": "THUDM/chatglm3-6b-32k",
"chatglm3-6b-base": "THUDM/chatglm3-6b-base",
"Qwen-1_8B": "Qwen/Qwen-1_8B",
"Qwen-1_8B-Chat": "Qwen/Qwen-1_8B-Chat",
"Qwen-1_8B-Chat-Int8": "Qwen/Qwen-1_8B-Chat-Int8",
"Qwen-1_8B-Chat-Int4": "Qwen/Qwen-1_8B-Chat-Int4",
"Llama-2-7b-chat-hf": "meta-llama/Llama-2-7b-chat-hf",
"Llama-2-13b-chat-hf": "meta-llama/Llama-2-13b-chat-hf",
"Llama-2-70b-chat-hf": "meta-llama/Llama-2-70b-chat-hf",
"Qwen-7B": "Qwen/Qwen-7B",
"Qwen-1_8B-Chat": "/media/checkpoint/Qwen-1_8B-Chat",
"Qwen-7B-Chat": "Qwen/Qwen-7B-Chat",
"Qwen-14B": "Qwen/Qwen-14B",
"Qwen-14B-Chat": "Qwen/Qwen-14B-Chat",
"Qwen-14B-Chat-Int8": "Qwen/Qwen-14B-Chat-Int8",
# 在新版的transformers下需要手动修改模型的config.json文件在quantization_config字典中
# 增加`disable_exllama:true` 字段才能启动qwen的量化模型
"Qwen-14B-Chat-Int4": "Qwen/Qwen-14B-Chat-Int4",
"Qwen-72B": "Qwen/Qwen-72B",
"Qwen-72B-Chat": "Qwen/Qwen-72B-Chat",
"Qwen-72B-Chat-Int8": "Qwen/Qwen-72B-Chat-Int8",
"Qwen-72B-Chat-Int4": "Qwen/Qwen-72B-Chat-Int4",
"baichuan2-13b": "baichuan-inc/Baichuan2-13B-Chat",
"baichuan2-7b": "baichuan-inc/Baichuan2-7B-Chat",
"baichuan-7b": "baichuan-inc/Baichuan-7B",
"baichuan-13b": "baichuan-inc/Baichuan-13B",
"baichuan-7b-chat": "baichuan-inc/Baichuan-7B-Chat",
"baichuan-13b-chat": "baichuan-inc/Baichuan-13B-Chat",
"aquila-7b": "BAAI/Aquila-7B",
"aquilachat-7b": "BAAI/AquilaChat-7B",
"baichuan2-7b-chat": "baichuan-inc/Baichuan2-7B-Chat",
"baichuan2-13b-chat": "baichuan-inc/Baichuan2-13B-Chat",
"internlm-7b": "internlm/internlm-7b",
"internlm-chat-7b": "internlm/internlm-chat-7b",
"internlm2-chat-7b": "internlm/internlm2-chat-7b",
"internlm2-chat-20b": "internlm/internlm2-chat-20b",
"BlueLM-7B-Chat": "vivo-ai/BlueLM-7B-Chat",
"BlueLM-7B-Chat-32k": "vivo-ai/BlueLM-7B-Chat-32k",
"Yi-34B-Chat": "https://huggingface.co/01-ai/Yi-34B-Chat",
"agentlm-7b": "THUDM/agentlm-7b",
"agentlm-13b": "THUDM/agentlm-13b",
"agentlm-70b": "THUDM/agentlm-70b",
"falcon-7b": "tiiuae/falcon-7b",
"falcon-40b": "tiiuae/falcon-40b",
"falcon-rw-7b": "tiiuae/falcon-rw-7b",
"aquila-7b": "BAAI/Aquila-7B",
"aquilachat-7b": "BAAI/AquilaChat-7B",
"open_llama_13b": "openlm-research/open_llama_13b",
"vicuna-13b-v1.5": "lmsys/vicuna-13b-v1.5",
"koala": "young-geng/koala",
"mpt-7b": "mosaicml/mpt-7b",
"mpt-7b-storywriter": "mosaicml/mpt-7b-storywriter",
"mpt-30b": "mosaicml/mpt-30b",
"opt-66b": "facebook/opt-66b",
"opt-iml-max-30b": "facebook/opt-iml-max-30b",
"gpt2": "gpt2",
"gpt2-xl": "gpt2-xl",
"gpt-j-6b": "EleutherAI/gpt-j-6b",
"gpt4all-j": "nomic-ai/gpt4all-j",
"gpt-neox-20b": "EleutherAI/gpt-neox-20b",
@ -231,63 +219,50 @@ MODEL_PATH = {
"oasst-sft-4-pythia-12b-epoch-3.5": "OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5",
"dolly-v2-12b": "databricks/dolly-v2-12b",
"stablelm-tuned-alpha-7b": "stabilityai/stablelm-tuned-alpha-7b",
"Llama-2-13b-hf": "meta-llama/Llama-2-13b-hf",
"Llama-2-70b-hf": "meta-llama/Llama-2-70b-hf",
"open_llama_13b": "openlm-research/open_llama_13b",
"vicuna-13b-v1.3": "lmsys/vicuna-13b-v1.3",
"koala": "young-geng/koala",
"mpt-7b": "mosaicml/mpt-7b",
"mpt-7b-storywriter": "mosaicml/mpt-7b-storywriter",
"mpt-30b": "mosaicml/mpt-30b",
"opt-66b": "facebook/opt-66b",
"opt-iml-max-30b": "facebook/opt-iml-max-30b",
"agentlm-7b": "THUDM/agentlm-7b",
"agentlm-13b": "THUDM/agentlm-13b",
"agentlm-70b": "THUDM/agentlm-70b",
"Yi-34B-Chat": "01-ai/Yi-34B-Chat",
},
"reranker":{
"bge-reranker-large":"BAAI/bge-reranker-large",
"bge-reranker-base":"BAAI/bge-reranker-base",
#TODO 增加在线reranker如cohere
"reranker": {
"bge-reranker-large": "BAAI/bge-reranker-large",
"bge-reranker-base": "BAAI/bge-reranker-base",
}
}
# 通常情况下不需要更改以下内容
# nltk 模型存储路径
NLTK_DATA_PATH = os.path.join(os.path.dirname(os.path.dirname(__file__)), "nltk_data")
# 使用VLLM可能导致模型推理能力下降无法完成Agent任务
VLLM_MODEL_DICT = {
"aquila-7b": "BAAI/Aquila-7B",
"aquilachat-7b": "BAAI/AquilaChat-7B",
"baichuan-7b": "baichuan-inc/Baichuan-7B",
"baichuan-13b": "baichuan-inc/Baichuan-13B",
"baichuan-13b-chat": "baichuan-inc/Baichuan-13B-Chat",
"chatglm2-6b": "THUDM/chatglm2-6b",
"chatglm2-6b-32k": "THUDM/chatglm2-6b-32k",
"chatglm3-6b": "THUDM/chatglm3-6b",
"chatglm3-6b-32k": "THUDM/chatglm3-6b-32k",
"Llama-2-7b-chat-hf": "meta-llama/Llama-2-7b-chat-hf",
"Llama-2-13b-chat-hf": "meta-llama/Llama-2-13b-chat-hf",
"Llama-2-70b-chat-hf": "meta-llama/Llama-2-70b-chat-hf",
"Qwen-1_8B-Chat": "Qwen/Qwen-1_8B-Chat",
"Qwen-7B-Chat": "Qwen/Qwen-7B-Chat",
"Qwen-14B-Chat": "Qwen/Qwen-14B-Chat",
"Qwen-72B-Chat": "Qwen/Qwen-72B-Chat",
"baichuan-7b-chat": "baichuan-inc/Baichuan-7B-Chat",
"baichuan-13b-chat": "baichuan-inc/Baichuan-13B-Chat",
"baichuan2-7b-chat": "baichuan-inc/Baichuan-7B-Chat",
"baichuan2-13b-chat": "baichuan-inc/Baichuan-13B-Chat",
"BlueLM-7B-Chat": "vivo-ai/BlueLM-7B-Chat",
"BlueLM-7B-Chat-32k": "vivo-ai/BlueLM-7B-Chat-32k",
# 注意bloom系列的tokenizer与model是分离的因此虽然vllm支持但与fschat框架不兼容
# "bloom": "bigscience/bloom",
# "bloomz": "bigscience/bloomz",
# "bloomz-560m": "bigscience/bloomz-560m",
# "bloomz-7b1": "bigscience/bloomz-7b1",
# "bloomz-1b7": "bigscience/bloomz-1b7",
"internlm-7b": "internlm/internlm-7b",
"internlm-chat-7b": "internlm/internlm-chat-7b",
"internlm2-chat-7b": "internlm/Models/internlm2-chat-7b",
"internlm2-chat-20b": "internlm/Models/internlm2-chat-20b",
"aquila-7b": "BAAI/Aquila-7B",
"aquilachat-7b": "BAAI/AquilaChat-7B",
"falcon-7b": "tiiuae/falcon-7b",
"falcon-40b": "tiiuae/falcon-40b",
"falcon-rw-7b": "tiiuae/falcon-rw-7b",
@ -300,8 +275,6 @@ VLLM_MODEL_DICT = {
"oasst-sft-4-pythia-12b-epoch-3.5": "OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5",
"dolly-v2-12b": "databricks/dolly-v2-12b",
"stablelm-tuned-alpha-7b": "stabilityai/stablelm-tuned-alpha-7b",
"Llama-2-13b-hf": "meta-llama/Llama-2-13b-hf",
"Llama-2-70b-hf": "meta-llama/Llama-2-70b-hf",
"open_llama_13b": "openlm-research/open_llama_13b",
"vicuna-13b-v1.3": "lmsys/vicuna-13b-v1.3",
"koala": "young-geng/koala",
@ -311,37 +284,12 @@ VLLM_MODEL_DICT = {
"opt-66b": "facebook/opt-66b",
"opt-iml-max-30b": "facebook/opt-iml-max-30b",
"Qwen-1_8B": "Qwen/Qwen-1_8B",
"Qwen-1_8B-Chat": "Qwen/Qwen-1_8B-Chat",
"Qwen-1_8B-Chat-Int8": "Qwen/Qwen-1_8B-Chat-Int8",
"Qwen-1_8B-Chat-Int4": "Qwen/Qwen-1_8B-Chat-Int4",
"Qwen-7B": "Qwen/Qwen-7B",
"Qwen-7B-Chat": "Qwen/Qwen-7B-Chat",
"Qwen-14B": "Qwen/Qwen-14B",
"Qwen-14B-Chat": "Qwen/Qwen-14B-Chat",
"Qwen-14B-Chat-Int8": "Qwen/Qwen-14B-Chat-Int8",
"Qwen-14B-Chat-Int4": "Qwen/Qwen-14B-Chat-Int4",
"Qwen-72B": "Qwen/Qwen-72B",
"Qwen-72B-Chat": "Qwen/Qwen-72B-Chat",
"Qwen-72B-Chat-Int8": "Qwen/Qwen-72B-Chat-Int8",
"Qwen-72B-Chat-Int4": "Qwen/Qwen-72B-Chat-Int4",
"agentlm-7b": "THUDM/agentlm-7b",
"agentlm-13b": "THUDM/agentlm-13b",
"agentlm-70b": "THUDM/agentlm-70b",
}
# 你认为支持Agent能力的模型可以在这里添加添加后不会出现可视化界面的警告
# 经过我们测试原生支持Agent的模型仅有以下几个
SUPPORT_AGENT_MODEL = [
"azure-api",
"openai-api",
"qwen-api",
"Qwen",
"chatglm3",
"xinghuo-api",
]

View File

@ -10,7 +10,7 @@ sentence_transformers==2.2.2
langchain==0.0.354
langchain-experimental==0.0.47
pydantic==1.10.13
fschat==0.2.34
fschat==0.2.35
openai~=1.7.1
fastapi~=0.108.0
sse_starlette==1.8.2
@ -48,8 +48,7 @@ beautifulsoup4~=4.12.2 # for .mhtml files
pysrt~=1.1.2
# Online api libs dependencies
zhipuai==1.0.7 # zhipu
# zhipuAI sdk is not supported on our platform, so use http instead
dashscope==1.13.6 # qwen
# volcengine>=1.0.119 # fangzhou

View File

@ -8,7 +8,7 @@ sentence_transformers==2.2.2
langchain==0.0.354
langchain-experimental==0.0.47
pydantic==1.10.13
fschat==0.2.34
fschat==0.2.35
openai~=1.7.1
fastapi~=0.108.0
sse_starlette==1.8.2
@ -49,7 +49,7 @@ pysrt~=1.1.2
# Online api libs dependencies
zhipuai==1.0.7 # zhipu
# zhipuAI sdk is not supported on our platform, so use http instead
dashscope==1.13.6 # qwen
# volcengine>=1.0.119 # fangzhou

View File

@ -3,7 +3,7 @@
langchain==0.0.354
langchain-experimental==0.0.47
pydantic==1.10.13
fschat==0.2.34
fschat==0.2.35
openai~=1.7.1
fastapi~=0.108.0
sse_starlette==1.8.2
@ -36,7 +36,7 @@ pytest
# Online api libs dependencies
zhipuai==1.0.7
# zhipuAI sdk is not supported on our platform, so use http instead
dashscope==1.13.6
# volcengine>=1.0.119

View File

@ -20,6 +20,6 @@ def weather(location: str, api_key: str):
def weathercheck(location: str):
return weather(location, "S8vrB4U_-c5mvAMiK")
return weather(location, "your keys")
class WeatherInput(BaseModel):
location: str = Field(description="City name,include city and county,like '厦门'")
location: str = Field(description="City name,include city and county")

View File

@ -18,13 +18,10 @@ class MilvusKBService(KBService):
from pymilvus import Collection
return Collection(milvus_name)
# def save_vector_store(self):
# if self.milvus.col:
# self.milvus.col.flush()
def get_doc_by_ids(self, ids: List[str]) -> List[Document]:
result = []
if self.milvus.col:
# ids = [int(id) for id in ids] # for milvus if needed #pr 2725
data_list = self.milvus.col.query(expr=f'pk in {ids}', output_fields=["*"])
for data in data_list:
text = data.pop("text")

View File

@ -16,13 +16,10 @@ class ZillizKBService(KBService):
from pymilvus import Collection
return Collection(zilliz_name)
# def save_vector_store(self):
# if self.zilliz.col:
# self.zilliz.col.flush()
def get_doc_by_ids(self, ids: List[str]) -> List[Document]:
result = []
if self.zilliz.col:
# ids = [int(id) for id in ids] # for zilliz if needed #pr 2725
data_list = self.zilliz.col.query(expr=f'pk in {ids}', output_fields=["*"])
for data in data_list:
text = data.pop("text")
@ -50,8 +47,7 @@ class ZillizKBService(KBService):
def _load_zilliz(self):
zilliz_args = kbs_config.get("zilliz")
self.zilliz = Zilliz(embedding_function=EmbeddingsFunAdapter(self.embed_model),
collection_name=self.kb_name, connection_args=zilliz_args)
collection_name=self.kb_name, connection_args=zilliz_args)
def do_init(self):
self._load_zilliz()
@ -95,9 +91,7 @@ class ZillizKBService(KBService):
if __name__ == '__main__':
from server.db.base import Base, engine
Base.metadata.create_all(bind=engine)
zillizService = ZillizKBService("test")

View File

@ -18,7 +18,7 @@ class GeminiWorker(ApiModelWorker):
**kwargs,
):
kwargs.update(model_names=model_names, controller_addr=controller_addr, worker_addr=worker_addr)
kwargs.setdefault("context_len", 4096) #TODO 16K模型需要改成16384
kwargs.setdefault("context_len", 4096)
super().__init__(**kwargs)
def create_gemini_messages(self,messages) -> json:
@ -47,10 +47,10 @@ class GeminiWorker(ApiModelWorker):
params.load_config(self.model_names[0])
data = self.create_gemini_messages(messages=params.messages)
generationConfig=dict(
temperature = params.temperature,
topK = 1,
topP = 1,
maxOutputTokens = 4096,
temperature=params.temperature,
topK=1,
topP=1,
maxOutputTokens=4096,
stopSequences=[]
)

View File

@ -84,30 +84,6 @@ class QianFanWorker(ApiModelWorker):
def do_chat(self, params: ApiChatParams) -> Dict:
params.load_config(self.model_names[0])
# import qianfan
# comp = qianfan.ChatCompletion(model=params.version,
# endpoint=params.version_url,
# ak=params.api_key,
# sk=params.secret_key,)
# text = ""
# for resp in comp.do(messages=params.messages,
# temperature=params.temperature,
# top_p=params.top_p,
# stream=True):
# if resp.code == 200:
# if chunk := resp.body.get("result"):
# text += chunk
# yield {
# "error_code": 0,
# "text": text
# }
# else:
# yield {
# "error_code": resp.code,
# "text": str(resp.body),
# }
BASE_URL = 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat' \
'/{model_version}?access_token={access_token}'
@ -190,19 +166,19 @@ class QianFanWorker(ApiModelWorker):
i = 0
batch_size = 10
while i < len(params.texts):
texts = params.texts[i:i+batch_size]
texts = params.texts[i:i + batch_size]
resp = client.post(url, json={"input": texts}).json()
if "error_code" in resp:
data = {
"code": resp["error_code"],
"msg": resp["error_msg"],
"error": {
"message": resp["error_msg"],
"type": "invalid_request_error",
"param": None,
"code": None,
}
}
"code": resp["error_code"],
"msg": resp["error_msg"],
"error": {
"message": resp["error_msg"],
"type": "invalid_request_error",
"param": None,
"code": None,
}
}
self.logger.error(f"请求千帆 API 时发生错误:{data}")
return data
else:

View File

@ -11,16 +11,15 @@ from typing import List, Literal, Dict
import requests
class TianGongWorker(ApiModelWorker):
def __init__(
self,
*,
controller_addr: str = None,
worker_addr: str = None,
model_names: List[str] = ["tiangong-api"],
version: Literal["SkyChat-MegaVerse"] = "SkyChat-MegaVerse",
**kwargs,
self,
*,
controller_addr: str = None,
worker_addr: str = None,
model_names: List[str] = ["tiangong-api"],
version: Literal["SkyChat-MegaVerse"] = "SkyChat-MegaVerse",
**kwargs,
):
kwargs.update(model_names=model_names, controller_addr=controller_addr, worker_addr=worker_addr)
kwargs.setdefault("context_len", 32768)
@ -34,18 +33,18 @@ class TianGongWorker(ApiModelWorker):
data = {
"messages": params.messages,
"model": "SkyChat-MegaVerse"
}
timestamp = str(int(time.time()))
sign_content = params.api_key + params.secret_key + timestamp
sign_result = hashlib.md5(sign_content.encode('utf-8')).hexdigest()
headers={
}
timestamp = str(int(time.time()))
sign_content = params.api_key + params.secret_key + timestamp
sign_result = hashlib.md5(sign_content.encode('utf-8')).hexdigest()
headers = {
"app_key": params.api_key,
"timestamp": timestamp,
"sign": sign_result,
"Content-Type": "application/json",
"stream": "true" # or change to "false" 不处理流式返回内容
"stream": "true" # or change to "false" 不处理流式返回内容
}
# 发起请求并获取响应
response = requests.post(url, headers=headers, json=data, stream=True)
@ -56,17 +55,17 @@ class TianGongWorker(ApiModelWorker):
# 处理接收到的数据
# print(line.decode('utf-8'))
resp = json.loads(line)
if resp["code"] == 200:
if resp["code"] == 200:
text += resp['resp_data']['reply']
yield {
"error_code": 0,
"text": text
}
}
else:
data = {
"error_code": resp["code"],
"text": resp["code_msg"]
}
}
self.logger.error(f"请求天工 API 时出错:{data}")
yield data
@ -85,5 +84,3 @@ class TianGongWorker(ApiModelWorker):
sep="\n### ",
stop_str="###",
)

View File

@ -37,7 +37,7 @@ class XingHuoWorker(ApiModelWorker):
**kwargs,
):
kwargs.update(model_names=model_names, controller_addr=controller_addr, worker_addr=worker_addr)
kwargs.setdefault("context_len", 8000) # TODO: V1模型的最大长度为4000需要自行修改
kwargs.setdefault("context_len", 8000)
super().__init__(**kwargs)
self.version = version

View File

@ -4,93 +4,86 @@ from fastchat import conversation as conv
import sys
from typing import List, Dict, Iterator, Literal
from configs import logger, log_verbose
import requests
import jwt
import time
import json
def generate_token(apikey: str, exp_seconds: int):
try:
id, secret = apikey.split(".")
except Exception as e:
raise Exception("invalid apikey", e)
payload = {
"api_key": id,
"exp": int(round(time.time() * 1000)) + exp_seconds * 1000,
"timestamp": int(round(time.time() * 1000)),
}
return jwt.encode(
payload,
secret,
algorithm="HS256",
headers={"alg": "HS256", "sign_type": "SIGN"},
)
class ChatGLMWorker(ApiModelWorker):
DEFAULT_EMBED_MODEL = "text_embedding"
def __init__(
self,
*,
model_names: List[str] = ["zhipu-api"],
controller_addr: str = None,
worker_addr: str = None,
version: Literal["chatglm_turbo"] = "chatglm_turbo",
**kwargs,
self,
*,
model_names: List[str] = ["zhipu-api"],
controller_addr: str = None,
worker_addr: str = None,
version: Literal["chatglm_turbo"] = "chatglm_turbo",
**kwargs,
):
kwargs.update(model_names=model_names, controller_addr=controller_addr, worker_addr=worker_addr)
kwargs.setdefault("context_len", 32768)
kwargs.setdefault("context_len", 4096)
super().__init__(**kwargs)
self.version = version
def do_chat(self, params: ApiChatParams) -> Iterator[Dict]:
# TODO: 维护request_id
import zhipuai
params.load_config(self.model_names[0])
zhipuai.api_key = params.api_key
if log_verbose:
logger.info(f'{self.__class__.__name__}:params: {params}')
response = zhipuai.model_api.sse_invoke(
model=params.version,
prompt=params.messages,
temperature=params.temperature,
top_p=params.top_p,
incremental=False,
)
for e in response.events():
if e.event == "add":
yield {"error_code": 0, "text": e.data}
elif e.event in ["error", "interrupted"]:
data = {
"error_code": 500,
"text": e.data,
"error": {
"message": e.data,
"type": "invalid_request_error",
"param": None,
"code": None,
}
}
self.logger.error(f"请求智谱 API 时发生错误:{data}")
yield data
def do_embeddings(self, params: ApiEmbeddingsParams) -> Dict:
import zhipuai
params.load_config(self.model_names[0])
zhipuai.api_key = params.api_key
embeddings = []
try:
for t in params.texts:
response = zhipuai.model_api.invoke(model=params.embed_model or self.DEFAULT_EMBED_MODEL, prompt=t)
if response["code"] == 200:
embeddings.append(response["data"]["embedding"])
else:
self.logger.error(f"请求智谱 API 时发生错误:{response}")
return response # dict with code & msg
except Exception as e:
self.logger.error(f"请求智谱 API 时发生错误:{data}")
data = {"code": 500, "msg": f"对文本向量化时出错:{e}"}
return data
return {"code": 200, "data": embeddings}
token = generate_token(params.api_key, 60)
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {token}"
}
data = {
"model": params.version,
"messages": params.messages,
"max_tokens": params.max_tokens,
"temperature": params.temperature,
"stream": True
}
url = "https://open.bigmodel.cn/api/paas/v4/chat/completions"
response = requests.post(url, headers=headers, json=data, stream=True)
for chunk in response.iter_lines():
if chunk:
chunk_str = chunk.decode('utf-8')
json_start_pos = chunk_str.find('{"id"')
if json_start_pos != -1:
json_str = chunk_str[json_start_pos:]
json_data = json.loads(json_str)
for choice in json_data.get('choices', []):
delta = choice.get('delta', {})
content = delta.get('content', '')
yield {"error_code": 0, "text": content}
def get_embeddings(self, params):
# TODO: 支持embeddings
# 临时解决方案不支持embedding
print("embedding")
# print(params)
print(params)
def make_conv_template(self, conv_template: str = None, model_path: str = None) -> Conversation:
# 这里的是chatglm api的模板其它API的conv_template需要定制
return conv.Conversation(
name=self.model_names[0],
system_message="你是一个聪明的助手,请根据用户的提示来完成任务",
system_message="你是智谱AI小助手请根据用户的提示来完成任务",
messages=[],
roles=["Human", "Assistant", "System"],
roles=["user", "assistant", "system"],
sep="\n###",
stop_str="###",
)

View File

@ -503,16 +503,12 @@ def set_httpx_config(
no_proxy.append(host)
os.environ["NO_PROXY"] = ",".join(no_proxy)
# TODO: 简单的清除系统代理不是个好的选择影响太多。似乎修改代理服务器的bypass列表更好。
# patch requests to use custom proxies instead of system settings
def _get_proxies():
return proxies
import urllib.request
urllib.request.getproxies = _get_proxies
# 自动检查torch可用的设备。分布式部署时不运行LLM的机器上可以不装torch
def detect_device() -> Literal["cuda", "mps", "cpu"]:
try: