mirror of
https://github.com/RYDE-WORK/Langchain-Chatchat.git
synced 2026-01-26 00:33:35 +08:00
commit
c0968fb581
@ -6,9 +6,9 @@ import os
|
||||
MODEL_ROOT_PATH = ""
|
||||
|
||||
# 选用的 Embedding 名称
|
||||
EMBEDDING_MODEL = "bge-large-zh"
|
||||
EMBEDDING_MODEL = "bge-large-zh-v1.5"
|
||||
|
||||
# Embedding 模型运行设备。设为"auto"会自动检测,也可手动设定为"cuda","mps","cpu"其中之一。
|
||||
# Embedding 模型运行设备。设为"auto"会自动检测(会有警告),也可手动设定为 "cuda","mps","cpu","xpu" 其中之一。
|
||||
EMBEDDING_DEVICE = "auto"
|
||||
|
||||
# 选用的reranker模型
|
||||
@ -26,50 +26,33 @@ EMBEDDING_MODEL_OUTPUT_PATH = "output"
|
||||
# 在这里,我们使用目前主流的两个离线模型,其中,chatglm3-6b 为默认加载模型。
|
||||
# 如果你的显存不足,可使用 Qwen-1_8B-Chat, 该模型 FP16 仅需 3.8G显存。
|
||||
|
||||
# chatglm3-6b输出角色标签<|user|>及自问自答的问题详见项目wiki->常见问题->Q20.
|
||||
|
||||
LLM_MODELS = ["chatglm3-6b", "zhipu-api", "openai-api"] # "Qwen-1_8B-Chat",
|
||||
|
||||
# AgentLM模型的名称 (可以不指定,指定之后就锁定进入Agent之后的Chain的模型,不指定就是LLM_MODELS[0])
|
||||
LLM_MODELS = ["zhipu-api"]
|
||||
Agent_MODEL = None
|
||||
|
||||
# LLM 运行设备。设为"auto"会自动检测,也可手动设定为"cuda","mps","cpu"其中之一。
|
||||
LLM_DEVICE = "auto"
|
||||
# LLM 模型运行设备。设为"auto"会自动检测(会有警告),也可手动设定为 "cuda","mps","cpu","xpu" 其中之一。
|
||||
LLM_DEVICE = "cuda"
|
||||
|
||||
# 历史对话轮数
|
||||
HISTORY_LEN = 3
|
||||
|
||||
# 大模型最长支持的长度,如果不填写,则使用模型默认的最大长度,如果填写,则为用户设定的最大长度
|
||||
MAX_TOKENS = None
|
||||
MAX_TOKENS = 2048
|
||||
|
||||
# LLM通用对话参数
|
||||
TEMPERATURE = 0.7
|
||||
# TOP_P = 0.95 # ChatOpenAI暂不支持该参数
|
||||
|
||||
ONLINE_LLM_MODEL = {
|
||||
# 线上模型。请在server_config中为每个在线API设置不同的端口
|
||||
|
||||
"openai-api": {
|
||||
"model_name": "gpt-3.5-turbo",
|
||||
"model_name": "gpt-4",
|
||||
"api_base_url": "https://api.openai.com/v1",
|
||||
"api_key": "",
|
||||
"openai_proxy": "",
|
||||
},
|
||||
|
||||
# 获取api_key请前往https://makersuite.google.com/或者google cloud,使用前先确认网络正常,使用代理请在项目启动(python startup.py -a)环境内设置https_proxy环境变量
|
||||
"gemini-api": {
|
||||
"api_key": "",
|
||||
"provider": "GeminiWorker",
|
||||
},
|
||||
|
||||
# 具体注册及api key获取请前往 http://open.bigmodel.cn
|
||||
# 智谱AI API,具体注册及api key获取请前往 http://open.bigmodel.cn
|
||||
"zhipu-api": {
|
||||
"api_key": "",
|
||||
"version": "chatglm_turbo", # 可选包括 "chatglm_turbo"
|
||||
"version": "glm-4",
|
||||
"provider": "ChatGLMWorker",
|
||||
},
|
||||
|
||||
|
||||
# 具体注册及api key获取请前往 https://api.minimax.chat/
|
||||
"minimax-api": {
|
||||
"group_id": "",
|
||||
@ -78,7 +61,6 @@ ONLINE_LLM_MODEL = {
|
||||
"provider": "MiniMaxWorker",
|
||||
},
|
||||
|
||||
|
||||
# 具体注册及api key获取请前往 https://xinghuo.xfyun.cn/
|
||||
"xinghuo-api": {
|
||||
"APPID": "",
|
||||
@ -99,8 +81,8 @@ ONLINE_LLM_MODEL = {
|
||||
|
||||
# 火山方舟 API,文档参考 https://www.volcengine.com/docs/82379
|
||||
"fangzhou-api": {
|
||||
"version": "chatglm-6b-model", # 当前支持 "chatglm-6b-model", 更多的见文档模型支持列表中方舟部分。
|
||||
"version_url": "", # 可以不填写version,直接填写在方舟申请模型发布的API地址
|
||||
"version": "chatglm-6b-model",
|
||||
"version_url": "",
|
||||
"api_key": "",
|
||||
"secret_key": "",
|
||||
"provider": "FangZhouWorker",
|
||||
@ -108,15 +90,15 @@ ONLINE_LLM_MODEL = {
|
||||
|
||||
# 阿里云通义千问 API,文档参考 https://help.aliyun.com/zh/dashscope/developer-reference/api-details
|
||||
"qwen-api": {
|
||||
"version": "qwen-turbo", # 可选包括 "qwen-turbo", "qwen-plus"
|
||||
"api_key": "", # 请在阿里云控制台模型服务灵积API-KEY管理页面创建
|
||||
"version": "qwen-max",
|
||||
"api_key": "",
|
||||
"provider": "QwenWorker",
|
||||
"embed_model": "text-embedding-v1" # embedding 模型名称
|
||||
"embed_model": "text-embedding-v1" # embedding 模型名称
|
||||
},
|
||||
|
||||
# 百川 API,申请方式请参考 https://www.baichuan-ai.com/home#api-enter
|
||||
"baichuan-api": {
|
||||
"version": "Baichuan2-53B", # 当前支持 "Baichuan2-53B", 见官方文档。
|
||||
"version": "Baichuan2-53B",
|
||||
"api_key": "",
|
||||
"secret_key": "",
|
||||
"provider": "BaiChuanWorker",
|
||||
@ -138,6 +120,11 @@ ONLINE_LLM_MODEL = {
|
||||
"secret_key": "",
|
||||
"provider": "TianGongWorker",
|
||||
},
|
||||
# Gemini API (开发组未测试,由社群提供,只支持pro)https://makersuite.google.com/或者google cloud,使用前先确认网络正常,使用代理请在项目启动(python startup.py -a)环境内设置https_proxy环境变量
|
||||
"gemini-api": {
|
||||
"api_key": "",
|
||||
"provider": "GeminiWorker",
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
@ -149,6 +136,7 @@ ONLINE_LLM_MODEL = {
|
||||
# - GanymedeNil/text2vec-large-chinese
|
||||
# - text2vec-large-chinese
|
||||
# 2.2 如果以上本地路径不存在,则使用huggingface模型
|
||||
|
||||
MODEL_PATH = {
|
||||
"embed_model": {
|
||||
"ernie-tiny": "nghuyong/ernie-3.0-nano-zh",
|
||||
@ -167,7 +155,7 @@ MODEL_PATH = {
|
||||
"bge-large-zh": "BAAI/bge-large-zh",
|
||||
"bge-large-zh-noinstruct": "BAAI/bge-large-zh-noinstruct",
|
||||
"bge-base-zh-v1.5": "BAAI/bge-base-zh-v1.5",
|
||||
"bge-large-zh-v1.5": "BAAI/bge-large-zh-v1.5",
|
||||
"bge-large-zh-v1.5": "/share/home/zyx/Models/bge-large-zh-v1.5",
|
||||
"piccolo-base-zh": "sensenova/piccolo-base-zh",
|
||||
"piccolo-large-zh": "sensenova/piccolo-large-zh",
|
||||
"nlp_gte_sentence-embedding_chinese-large": "damo/nlp_gte_sentence-embedding_chinese-large",
|
||||
@ -175,55 +163,55 @@ MODEL_PATH = {
|
||||
},
|
||||
|
||||
"llm_model": {
|
||||
# 以下部分模型并未完全测试,仅根据fastchat和vllm模型的模型列表推定支持
|
||||
"chatglm2-6b": "THUDM/chatglm2-6b",
|
||||
"chatglm2-6b-32k": "THUDM/chatglm2-6b-32k",
|
||||
|
||||
"chatglm3-6b": "THUDM/chatglm3-6b",
|
||||
"chatglm3-6b-32k": "THUDM/chatglm3-6b-32k",
|
||||
"chatglm3-6b-base": "THUDM/chatglm3-6b-base",
|
||||
|
||||
"Qwen-1_8B": "Qwen/Qwen-1_8B",
|
||||
"Qwen-1_8B-Chat": "Qwen/Qwen-1_8B-Chat",
|
||||
"Qwen-1_8B-Chat-Int8": "Qwen/Qwen-1_8B-Chat-Int8",
|
||||
"Qwen-1_8B-Chat-Int4": "Qwen/Qwen-1_8B-Chat-Int4",
|
||||
"Llama-2-7b-chat-hf": "meta-llama/Llama-2-7b-chat-hf",
|
||||
"Llama-2-13b-chat-hf": "meta-llama/Llama-2-13b-chat-hf",
|
||||
"Llama-2-70b-chat-hf": "meta-llama/Llama-2-70b-chat-hf",
|
||||
|
||||
"Qwen-7B": "Qwen/Qwen-7B",
|
||||
"Qwen-1_8B-Chat": "/media/checkpoint/Qwen-1_8B-Chat",
|
||||
"Qwen-7B-Chat": "Qwen/Qwen-7B-Chat",
|
||||
|
||||
"Qwen-14B": "Qwen/Qwen-14B",
|
||||
"Qwen-14B-Chat": "Qwen/Qwen-14B-Chat",
|
||||
|
||||
"Qwen-14B-Chat-Int8": "Qwen/Qwen-14B-Chat-Int8",
|
||||
# 在新版的transformers下需要手动修改模型的config.json文件,在quantization_config字典中
|
||||
# 增加`disable_exllama:true` 字段才能启动qwen的量化模型
|
||||
"Qwen-14B-Chat-Int4": "Qwen/Qwen-14B-Chat-Int4",
|
||||
|
||||
"Qwen-72B": "Qwen/Qwen-72B",
|
||||
"Qwen-72B-Chat": "Qwen/Qwen-72B-Chat",
|
||||
"Qwen-72B-Chat-Int8": "Qwen/Qwen-72B-Chat-Int8",
|
||||
"Qwen-72B-Chat-Int4": "Qwen/Qwen-72B-Chat-Int4",
|
||||
|
||||
"baichuan2-13b": "baichuan-inc/Baichuan2-13B-Chat",
|
||||
"baichuan2-7b": "baichuan-inc/Baichuan2-7B-Chat",
|
||||
|
||||
"baichuan-7b": "baichuan-inc/Baichuan-7B",
|
||||
"baichuan-13b": "baichuan-inc/Baichuan-13B",
|
||||
"baichuan-7b-chat": "baichuan-inc/Baichuan-7B-Chat",
|
||||
"baichuan-13b-chat": "baichuan-inc/Baichuan-13B-Chat",
|
||||
|
||||
"aquila-7b": "BAAI/Aquila-7B",
|
||||
"aquilachat-7b": "BAAI/AquilaChat-7B",
|
||||
"baichuan2-7b-chat": "baichuan-inc/Baichuan2-7B-Chat",
|
||||
"baichuan2-13b-chat": "baichuan-inc/Baichuan2-13B-Chat",
|
||||
|
||||
"internlm-7b": "internlm/internlm-7b",
|
||||
"internlm-chat-7b": "internlm/internlm-chat-7b",
|
||||
"internlm2-chat-7b": "internlm/internlm2-chat-7b",
|
||||
"internlm2-chat-20b": "internlm/internlm2-chat-20b",
|
||||
|
||||
"BlueLM-7B-Chat": "vivo-ai/BlueLM-7B-Chat",
|
||||
"BlueLM-7B-Chat-32k": "vivo-ai/BlueLM-7B-Chat-32k",
|
||||
|
||||
"Yi-34B-Chat": "https://huggingface.co/01-ai/Yi-34B-Chat",
|
||||
|
||||
"agentlm-7b": "THUDM/agentlm-7b",
|
||||
"agentlm-13b": "THUDM/agentlm-13b",
|
||||
"agentlm-70b": "THUDM/agentlm-70b",
|
||||
|
||||
"falcon-7b": "tiiuae/falcon-7b",
|
||||
"falcon-40b": "tiiuae/falcon-40b",
|
||||
"falcon-rw-7b": "tiiuae/falcon-rw-7b",
|
||||
|
||||
"aquila-7b": "BAAI/Aquila-7B",
|
||||
"aquilachat-7b": "BAAI/AquilaChat-7B",
|
||||
"open_llama_13b": "openlm-research/open_llama_13b",
|
||||
"vicuna-13b-v1.5": "lmsys/vicuna-13b-v1.5",
|
||||
"koala": "young-geng/koala",
|
||||
"mpt-7b": "mosaicml/mpt-7b",
|
||||
"mpt-7b-storywriter": "mosaicml/mpt-7b-storywriter",
|
||||
"mpt-30b": "mosaicml/mpt-30b",
|
||||
"opt-66b": "facebook/opt-66b",
|
||||
"opt-iml-max-30b": "facebook/opt-iml-max-30b",
|
||||
"gpt2": "gpt2",
|
||||
"gpt2-xl": "gpt2-xl",
|
||||
|
||||
"gpt-j-6b": "EleutherAI/gpt-j-6b",
|
||||
"gpt4all-j": "nomic-ai/gpt4all-j",
|
||||
"gpt-neox-20b": "EleutherAI/gpt-neox-20b",
|
||||
@ -231,63 +219,50 @@ MODEL_PATH = {
|
||||
"oasst-sft-4-pythia-12b-epoch-3.5": "OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5",
|
||||
"dolly-v2-12b": "databricks/dolly-v2-12b",
|
||||
"stablelm-tuned-alpha-7b": "stabilityai/stablelm-tuned-alpha-7b",
|
||||
|
||||
"Llama-2-13b-hf": "meta-llama/Llama-2-13b-hf",
|
||||
"Llama-2-70b-hf": "meta-llama/Llama-2-70b-hf",
|
||||
"open_llama_13b": "openlm-research/open_llama_13b",
|
||||
"vicuna-13b-v1.3": "lmsys/vicuna-13b-v1.3",
|
||||
"koala": "young-geng/koala",
|
||||
|
||||
"mpt-7b": "mosaicml/mpt-7b",
|
||||
"mpt-7b-storywriter": "mosaicml/mpt-7b-storywriter",
|
||||
"mpt-30b": "mosaicml/mpt-30b",
|
||||
"opt-66b": "facebook/opt-66b",
|
||||
"opt-iml-max-30b": "facebook/opt-iml-max-30b",
|
||||
|
||||
"agentlm-7b": "THUDM/agentlm-7b",
|
||||
"agentlm-13b": "THUDM/agentlm-13b",
|
||||
"agentlm-70b": "THUDM/agentlm-70b",
|
||||
|
||||
"Yi-34B-Chat": "01-ai/Yi-34B-Chat",
|
||||
},
|
||||
"reranker":{
|
||||
"bge-reranker-large":"BAAI/bge-reranker-large",
|
||||
"bge-reranker-base":"BAAI/bge-reranker-base",
|
||||
#TODO 增加在线reranker,如cohere
|
||||
"reranker": {
|
||||
"bge-reranker-large": "BAAI/bge-reranker-large",
|
||||
"bge-reranker-base": "BAAI/bge-reranker-base",
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
# 通常情况下不需要更改以下内容
|
||||
|
||||
# nltk 模型存储路径
|
||||
NLTK_DATA_PATH = os.path.join(os.path.dirname(os.path.dirname(__file__)), "nltk_data")
|
||||
|
||||
# 使用VLLM可能导致模型推理能力下降,无法完成Agent任务
|
||||
VLLM_MODEL_DICT = {
|
||||
"aquila-7b": "BAAI/Aquila-7B",
|
||||
"aquilachat-7b": "BAAI/AquilaChat-7B",
|
||||
|
||||
"baichuan-7b": "baichuan-inc/Baichuan-7B",
|
||||
"baichuan-13b": "baichuan-inc/Baichuan-13B",
|
||||
"baichuan-13b-chat": "baichuan-inc/Baichuan-13B-Chat",
|
||||
|
||||
"chatglm2-6b": "THUDM/chatglm2-6b",
|
||||
"chatglm2-6b-32k": "THUDM/chatglm2-6b-32k",
|
||||
"chatglm3-6b": "THUDM/chatglm3-6b",
|
||||
"chatglm3-6b-32k": "THUDM/chatglm3-6b-32k",
|
||||
|
||||
"Llama-2-7b-chat-hf": "meta-llama/Llama-2-7b-chat-hf",
|
||||
"Llama-2-13b-chat-hf": "meta-llama/Llama-2-13b-chat-hf",
|
||||
"Llama-2-70b-chat-hf": "meta-llama/Llama-2-70b-chat-hf",
|
||||
|
||||
"Qwen-1_8B-Chat": "Qwen/Qwen-1_8B-Chat",
|
||||
"Qwen-7B-Chat": "Qwen/Qwen-7B-Chat",
|
||||
"Qwen-14B-Chat": "Qwen/Qwen-14B-Chat",
|
||||
"Qwen-72B-Chat": "Qwen/Qwen-72B-Chat",
|
||||
|
||||
"baichuan-7b-chat": "baichuan-inc/Baichuan-7B-Chat",
|
||||
"baichuan-13b-chat": "baichuan-inc/Baichuan-13B-Chat",
|
||||
"baichuan2-7b-chat": "baichuan-inc/Baichuan-7B-Chat",
|
||||
"baichuan2-13b-chat": "baichuan-inc/Baichuan-13B-Chat",
|
||||
|
||||
"BlueLM-7B-Chat": "vivo-ai/BlueLM-7B-Chat",
|
||||
"BlueLM-7B-Chat-32k": "vivo-ai/BlueLM-7B-Chat-32k",
|
||||
|
||||
# 注意:bloom系列的tokenizer与model是分离的,因此虽然vllm支持,但与fschat框架不兼容
|
||||
# "bloom": "bigscience/bloom",
|
||||
# "bloomz": "bigscience/bloomz",
|
||||
# "bloomz-560m": "bigscience/bloomz-560m",
|
||||
# "bloomz-7b1": "bigscience/bloomz-7b1",
|
||||
# "bloomz-1b7": "bigscience/bloomz-1b7",
|
||||
|
||||
"internlm-7b": "internlm/internlm-7b",
|
||||
"internlm-chat-7b": "internlm/internlm-chat-7b",
|
||||
"internlm2-chat-7b": "internlm/Models/internlm2-chat-7b",
|
||||
"internlm2-chat-20b": "internlm/Models/internlm2-chat-20b",
|
||||
|
||||
"aquila-7b": "BAAI/Aquila-7B",
|
||||
"aquilachat-7b": "BAAI/AquilaChat-7B",
|
||||
|
||||
"falcon-7b": "tiiuae/falcon-7b",
|
||||
"falcon-40b": "tiiuae/falcon-40b",
|
||||
"falcon-rw-7b": "tiiuae/falcon-rw-7b",
|
||||
@ -300,8 +275,6 @@ VLLM_MODEL_DICT = {
|
||||
"oasst-sft-4-pythia-12b-epoch-3.5": "OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5",
|
||||
"dolly-v2-12b": "databricks/dolly-v2-12b",
|
||||
"stablelm-tuned-alpha-7b": "stabilityai/stablelm-tuned-alpha-7b",
|
||||
"Llama-2-13b-hf": "meta-llama/Llama-2-13b-hf",
|
||||
"Llama-2-70b-hf": "meta-llama/Llama-2-70b-hf",
|
||||
"open_llama_13b": "openlm-research/open_llama_13b",
|
||||
"vicuna-13b-v1.3": "lmsys/vicuna-13b-v1.3",
|
||||
"koala": "young-geng/koala",
|
||||
@ -311,37 +284,12 @@ VLLM_MODEL_DICT = {
|
||||
"opt-66b": "facebook/opt-66b",
|
||||
"opt-iml-max-30b": "facebook/opt-iml-max-30b",
|
||||
|
||||
"Qwen-1_8B": "Qwen/Qwen-1_8B",
|
||||
"Qwen-1_8B-Chat": "Qwen/Qwen-1_8B-Chat",
|
||||
"Qwen-1_8B-Chat-Int8": "Qwen/Qwen-1_8B-Chat-Int8",
|
||||
"Qwen-1_8B-Chat-Int4": "Qwen/Qwen-1_8B-Chat-Int4",
|
||||
|
||||
"Qwen-7B": "Qwen/Qwen-7B",
|
||||
"Qwen-7B-Chat": "Qwen/Qwen-7B-Chat",
|
||||
|
||||
"Qwen-14B": "Qwen/Qwen-14B",
|
||||
"Qwen-14B-Chat": "Qwen/Qwen-14B-Chat",
|
||||
"Qwen-14B-Chat-Int8": "Qwen/Qwen-14B-Chat-Int8",
|
||||
"Qwen-14B-Chat-Int4": "Qwen/Qwen-14B-Chat-Int4",
|
||||
|
||||
"Qwen-72B": "Qwen/Qwen-72B",
|
||||
"Qwen-72B-Chat": "Qwen/Qwen-72B-Chat",
|
||||
"Qwen-72B-Chat-Int8": "Qwen/Qwen-72B-Chat-Int8",
|
||||
"Qwen-72B-Chat-Int4": "Qwen/Qwen-72B-Chat-Int4",
|
||||
|
||||
"agentlm-7b": "THUDM/agentlm-7b",
|
||||
"agentlm-13b": "THUDM/agentlm-13b",
|
||||
"agentlm-70b": "THUDM/agentlm-70b",
|
||||
|
||||
}
|
||||
|
||||
# 你认为支持Agent能力的模型,可以在这里添加,添加后不会出现可视化界面的警告
|
||||
# 经过我们测试,原生支持Agent的模型仅有以下几个
|
||||
SUPPORT_AGENT_MODEL = [
|
||||
"azure-api",
|
||||
"openai-api",
|
||||
"qwen-api",
|
||||
"Qwen",
|
||||
"chatglm3",
|
||||
"xinghuo-api",
|
||||
]
|
||||
|
||||
@ -10,7 +10,7 @@ sentence_transformers==2.2.2
|
||||
langchain==0.0.354
|
||||
langchain-experimental==0.0.47
|
||||
pydantic==1.10.13
|
||||
fschat==0.2.34
|
||||
fschat==0.2.35
|
||||
openai~=1.7.1
|
||||
fastapi~=0.108.0
|
||||
sse_starlette==1.8.2
|
||||
@ -48,8 +48,7 @@ beautifulsoup4~=4.12.2 # for .mhtml files
|
||||
pysrt~=1.1.2
|
||||
|
||||
# Online api libs dependencies
|
||||
|
||||
zhipuai==1.0.7 # zhipu
|
||||
# zhipuAI sdk is not supported on our platform, so use http instead
|
||||
dashscope==1.13.6 # qwen
|
||||
# volcengine>=1.0.119 # fangzhou
|
||||
|
||||
|
||||
@ -8,7 +8,7 @@ sentence_transformers==2.2.2
|
||||
langchain==0.0.354
|
||||
langchain-experimental==0.0.47
|
||||
pydantic==1.10.13
|
||||
fschat==0.2.34
|
||||
fschat==0.2.35
|
||||
openai~=1.7.1
|
||||
fastapi~=0.108.0
|
||||
sse_starlette==1.8.2
|
||||
@ -49,7 +49,7 @@ pysrt~=1.1.2
|
||||
|
||||
# Online api libs dependencies
|
||||
|
||||
zhipuai==1.0.7 # zhipu
|
||||
# zhipuAI sdk is not supported on our platform, so use http instead
|
||||
dashscope==1.13.6 # qwen
|
||||
# volcengine>=1.0.119 # fangzhou
|
||||
|
||||
|
||||
@ -3,7 +3,7 @@
|
||||
langchain==0.0.354
|
||||
langchain-experimental==0.0.47
|
||||
pydantic==1.10.13
|
||||
fschat==0.2.34
|
||||
fschat==0.2.35
|
||||
openai~=1.7.1
|
||||
fastapi~=0.108.0
|
||||
sse_starlette==1.8.2
|
||||
@ -36,7 +36,7 @@ pytest
|
||||
|
||||
# Online api libs dependencies
|
||||
|
||||
zhipuai==1.0.7
|
||||
# zhipuAI sdk is not supported on our platform, so use http instead
|
||||
dashscope==1.13.6
|
||||
# volcengine>=1.0.119
|
||||
|
||||
|
||||
@ -20,6 +20,6 @@ def weather(location: str, api_key: str):
|
||||
|
||||
|
||||
def weathercheck(location: str):
|
||||
return weather(location, "S8vrB4U_-c5mvAMiK")
|
||||
return weather(location, "your keys")
|
||||
class WeatherInput(BaseModel):
|
||||
location: str = Field(description="City name,include city and county,like '厦门'")
|
||||
location: str = Field(description="City name,include city and county")
|
||||
|
||||
@ -18,13 +18,10 @@ class MilvusKBService(KBService):
|
||||
from pymilvus import Collection
|
||||
return Collection(milvus_name)
|
||||
|
||||
# def save_vector_store(self):
|
||||
# if self.milvus.col:
|
||||
# self.milvus.col.flush()
|
||||
|
||||
def get_doc_by_ids(self, ids: List[str]) -> List[Document]:
|
||||
result = []
|
||||
if self.milvus.col:
|
||||
# ids = [int(id) for id in ids] # for milvus if needed #pr 2725
|
||||
data_list = self.milvus.col.query(expr=f'pk in {ids}', output_fields=["*"])
|
||||
for data in data_list:
|
||||
text = data.pop("text")
|
||||
|
||||
@ -16,13 +16,10 @@ class ZillizKBService(KBService):
|
||||
from pymilvus import Collection
|
||||
return Collection(zilliz_name)
|
||||
|
||||
# def save_vector_store(self):
|
||||
# if self.zilliz.col:
|
||||
# self.zilliz.col.flush()
|
||||
|
||||
def get_doc_by_ids(self, ids: List[str]) -> List[Document]:
|
||||
result = []
|
||||
if self.zilliz.col:
|
||||
# ids = [int(id) for id in ids] # for zilliz if needed #pr 2725
|
||||
data_list = self.zilliz.col.query(expr=f'pk in {ids}', output_fields=["*"])
|
||||
for data in data_list:
|
||||
text = data.pop("text")
|
||||
@ -50,8 +47,7 @@ class ZillizKBService(KBService):
|
||||
def _load_zilliz(self):
|
||||
zilliz_args = kbs_config.get("zilliz")
|
||||
self.zilliz = Zilliz(embedding_function=EmbeddingsFunAdapter(self.embed_model),
|
||||
collection_name=self.kb_name, connection_args=zilliz_args)
|
||||
|
||||
collection_name=self.kb_name, connection_args=zilliz_args)
|
||||
|
||||
def do_init(self):
|
||||
self._load_zilliz()
|
||||
@ -95,9 +91,7 @@ class ZillizKBService(KBService):
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
from server.db.base import Base, engine
|
||||
|
||||
Base.metadata.create_all(bind=engine)
|
||||
zillizService = ZillizKBService("test")
|
||||
|
||||
|
||||
@ -18,7 +18,7 @@ class GeminiWorker(ApiModelWorker):
|
||||
**kwargs,
|
||||
):
|
||||
kwargs.update(model_names=model_names, controller_addr=controller_addr, worker_addr=worker_addr)
|
||||
kwargs.setdefault("context_len", 4096) #TODO 16K模型需要改成16384
|
||||
kwargs.setdefault("context_len", 4096)
|
||||
super().__init__(**kwargs)
|
||||
|
||||
def create_gemini_messages(self,messages) -> json:
|
||||
@ -47,10 +47,10 @@ class GeminiWorker(ApiModelWorker):
|
||||
params.load_config(self.model_names[0])
|
||||
data = self.create_gemini_messages(messages=params.messages)
|
||||
generationConfig=dict(
|
||||
temperature = params.temperature,
|
||||
topK = 1,
|
||||
topP = 1,
|
||||
maxOutputTokens = 4096,
|
||||
temperature=params.temperature,
|
||||
topK=1,
|
||||
topP=1,
|
||||
maxOutputTokens=4096,
|
||||
stopSequences=[]
|
||||
)
|
||||
|
||||
|
||||
@ -84,30 +84,6 @@ class QianFanWorker(ApiModelWorker):
|
||||
|
||||
def do_chat(self, params: ApiChatParams) -> Dict:
|
||||
params.load_config(self.model_names[0])
|
||||
# import qianfan
|
||||
|
||||
# comp = qianfan.ChatCompletion(model=params.version,
|
||||
# endpoint=params.version_url,
|
||||
# ak=params.api_key,
|
||||
# sk=params.secret_key,)
|
||||
# text = ""
|
||||
# for resp in comp.do(messages=params.messages,
|
||||
# temperature=params.temperature,
|
||||
# top_p=params.top_p,
|
||||
# stream=True):
|
||||
# if resp.code == 200:
|
||||
# if chunk := resp.body.get("result"):
|
||||
# text += chunk
|
||||
# yield {
|
||||
# "error_code": 0,
|
||||
# "text": text
|
||||
# }
|
||||
# else:
|
||||
# yield {
|
||||
# "error_code": resp.code,
|
||||
# "text": str(resp.body),
|
||||
# }
|
||||
|
||||
BASE_URL = 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat' \
|
||||
'/{model_version}?access_token={access_token}'
|
||||
|
||||
@ -190,19 +166,19 @@ class QianFanWorker(ApiModelWorker):
|
||||
i = 0
|
||||
batch_size = 10
|
||||
while i < len(params.texts):
|
||||
texts = params.texts[i:i+batch_size]
|
||||
texts = params.texts[i:i + batch_size]
|
||||
resp = client.post(url, json={"input": texts}).json()
|
||||
if "error_code" in resp:
|
||||
data = {
|
||||
"code": resp["error_code"],
|
||||
"msg": resp["error_msg"],
|
||||
"error": {
|
||||
"message": resp["error_msg"],
|
||||
"type": "invalid_request_error",
|
||||
"param": None,
|
||||
"code": None,
|
||||
}
|
||||
}
|
||||
"code": resp["error_code"],
|
||||
"msg": resp["error_msg"],
|
||||
"error": {
|
||||
"message": resp["error_msg"],
|
||||
"type": "invalid_request_error",
|
||||
"param": None,
|
||||
"code": None,
|
||||
}
|
||||
}
|
||||
self.logger.error(f"请求千帆 API 时发生错误:{data}")
|
||||
return data
|
||||
else:
|
||||
|
||||
@ -11,16 +11,15 @@ from typing import List, Literal, Dict
|
||||
import requests
|
||||
|
||||
|
||||
|
||||
class TianGongWorker(ApiModelWorker):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
controller_addr: str = None,
|
||||
worker_addr: str = None,
|
||||
model_names: List[str] = ["tiangong-api"],
|
||||
version: Literal["SkyChat-MegaVerse"] = "SkyChat-MegaVerse",
|
||||
**kwargs,
|
||||
self,
|
||||
*,
|
||||
controller_addr: str = None,
|
||||
worker_addr: str = None,
|
||||
model_names: List[str] = ["tiangong-api"],
|
||||
version: Literal["SkyChat-MegaVerse"] = "SkyChat-MegaVerse",
|
||||
**kwargs,
|
||||
):
|
||||
kwargs.update(model_names=model_names, controller_addr=controller_addr, worker_addr=worker_addr)
|
||||
kwargs.setdefault("context_len", 32768)
|
||||
@ -34,18 +33,18 @@ class TianGongWorker(ApiModelWorker):
|
||||
data = {
|
||||
"messages": params.messages,
|
||||
"model": "SkyChat-MegaVerse"
|
||||
}
|
||||
timestamp = str(int(time.time()))
|
||||
sign_content = params.api_key + params.secret_key + timestamp
|
||||
sign_result = hashlib.md5(sign_content.encode('utf-8')).hexdigest()
|
||||
headers={
|
||||
}
|
||||
timestamp = str(int(time.time()))
|
||||
sign_content = params.api_key + params.secret_key + timestamp
|
||||
sign_result = hashlib.md5(sign_content.encode('utf-8')).hexdigest()
|
||||
headers = {
|
||||
"app_key": params.api_key,
|
||||
"timestamp": timestamp,
|
||||
"sign": sign_result,
|
||||
"Content-Type": "application/json",
|
||||
"stream": "true" # or change to "false" 不处理流式返回内容
|
||||
"stream": "true" # or change to "false" 不处理流式返回内容
|
||||
}
|
||||
|
||||
|
||||
# 发起请求并获取响应
|
||||
response = requests.post(url, headers=headers, json=data, stream=True)
|
||||
|
||||
@ -56,17 +55,17 @@ class TianGongWorker(ApiModelWorker):
|
||||
# 处理接收到的数据
|
||||
# print(line.decode('utf-8'))
|
||||
resp = json.loads(line)
|
||||
if resp["code"] == 200:
|
||||
if resp["code"] == 200:
|
||||
text += resp['resp_data']['reply']
|
||||
yield {
|
||||
"error_code": 0,
|
||||
"text": text
|
||||
}
|
||||
}
|
||||
else:
|
||||
data = {
|
||||
"error_code": resp["code"],
|
||||
"text": resp["code_msg"]
|
||||
}
|
||||
}
|
||||
self.logger.error(f"请求天工 API 时出错:{data}")
|
||||
yield data
|
||||
|
||||
@ -85,5 +84,3 @@ class TianGongWorker(ApiModelWorker):
|
||||
sep="\n### ",
|
||||
stop_str="###",
|
||||
)
|
||||
|
||||
|
||||
|
||||
@ -37,7 +37,7 @@ class XingHuoWorker(ApiModelWorker):
|
||||
**kwargs,
|
||||
):
|
||||
kwargs.update(model_names=model_names, controller_addr=controller_addr, worker_addr=worker_addr)
|
||||
kwargs.setdefault("context_len", 8000) # TODO: V1模型的最大长度为4000,需要自行修改
|
||||
kwargs.setdefault("context_len", 8000)
|
||||
super().__init__(**kwargs)
|
||||
self.version = version
|
||||
|
||||
|
||||
@ -4,93 +4,86 @@ from fastchat import conversation as conv
|
||||
import sys
|
||||
from typing import List, Dict, Iterator, Literal
|
||||
from configs import logger, log_verbose
|
||||
import requests
|
||||
import jwt
|
||||
import time
|
||||
import json
|
||||
|
||||
|
||||
def generate_token(apikey: str, exp_seconds: int):
|
||||
try:
|
||||
id, secret = apikey.split(".")
|
||||
except Exception as e:
|
||||
raise Exception("invalid apikey", e)
|
||||
|
||||
payload = {
|
||||
"api_key": id,
|
||||
"exp": int(round(time.time() * 1000)) + exp_seconds * 1000,
|
||||
"timestamp": int(round(time.time() * 1000)),
|
||||
}
|
||||
|
||||
return jwt.encode(
|
||||
payload,
|
||||
secret,
|
||||
algorithm="HS256",
|
||||
headers={"alg": "HS256", "sign_type": "SIGN"},
|
||||
)
|
||||
|
||||
|
||||
class ChatGLMWorker(ApiModelWorker):
|
||||
DEFAULT_EMBED_MODEL = "text_embedding"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
model_names: List[str] = ["zhipu-api"],
|
||||
controller_addr: str = None,
|
||||
worker_addr: str = None,
|
||||
version: Literal["chatglm_turbo"] = "chatglm_turbo",
|
||||
**kwargs,
|
||||
self,
|
||||
*,
|
||||
model_names: List[str] = ["zhipu-api"],
|
||||
controller_addr: str = None,
|
||||
worker_addr: str = None,
|
||||
version: Literal["chatglm_turbo"] = "chatglm_turbo",
|
||||
**kwargs,
|
||||
):
|
||||
kwargs.update(model_names=model_names, controller_addr=controller_addr, worker_addr=worker_addr)
|
||||
kwargs.setdefault("context_len", 32768)
|
||||
kwargs.setdefault("context_len", 4096)
|
||||
super().__init__(**kwargs)
|
||||
self.version = version
|
||||
|
||||
def do_chat(self, params: ApiChatParams) -> Iterator[Dict]:
|
||||
# TODO: 维护request_id
|
||||
import zhipuai
|
||||
|
||||
params.load_config(self.model_names[0])
|
||||
zhipuai.api_key = params.api_key
|
||||
|
||||
if log_verbose:
|
||||
logger.info(f'{self.__class__.__name__}:params: {params}')
|
||||
|
||||
response = zhipuai.model_api.sse_invoke(
|
||||
model=params.version,
|
||||
prompt=params.messages,
|
||||
temperature=params.temperature,
|
||||
top_p=params.top_p,
|
||||
incremental=False,
|
||||
)
|
||||
for e in response.events():
|
||||
if e.event == "add":
|
||||
yield {"error_code": 0, "text": e.data}
|
||||
elif e.event in ["error", "interrupted"]:
|
||||
data = {
|
||||
"error_code": 500,
|
||||
"text": e.data,
|
||||
"error": {
|
||||
"message": e.data,
|
||||
"type": "invalid_request_error",
|
||||
"param": None,
|
||||
"code": None,
|
||||
}
|
||||
}
|
||||
self.logger.error(f"请求智谱 API 时发生错误:{data}")
|
||||
yield data
|
||||
|
||||
def do_embeddings(self, params: ApiEmbeddingsParams) -> Dict:
|
||||
import zhipuai
|
||||
|
||||
params.load_config(self.model_names[0])
|
||||
zhipuai.api_key = params.api_key
|
||||
|
||||
embeddings = []
|
||||
try:
|
||||
for t in params.texts:
|
||||
response = zhipuai.model_api.invoke(model=params.embed_model or self.DEFAULT_EMBED_MODEL, prompt=t)
|
||||
if response["code"] == 200:
|
||||
embeddings.append(response["data"]["embedding"])
|
||||
else:
|
||||
self.logger.error(f"请求智谱 API 时发生错误:{response}")
|
||||
return response # dict with code & msg
|
||||
except Exception as e:
|
||||
self.logger.error(f"请求智谱 API 时发生错误:{data}")
|
||||
data = {"code": 500, "msg": f"对文本向量化时出错:{e}"}
|
||||
return data
|
||||
|
||||
return {"code": 200, "data": embeddings}
|
||||
token = generate_token(params.api_key, 60)
|
||||
headers = {
|
||||
"Content-Type": "application/json",
|
||||
"Authorization": f"Bearer {token}"
|
||||
}
|
||||
data = {
|
||||
"model": params.version,
|
||||
"messages": params.messages,
|
||||
"max_tokens": params.max_tokens,
|
||||
"temperature": params.temperature,
|
||||
"stream": True
|
||||
}
|
||||
url = "https://open.bigmodel.cn/api/paas/v4/chat/completions"
|
||||
response = requests.post(url, headers=headers, json=data, stream=True)
|
||||
for chunk in response.iter_lines():
|
||||
if chunk:
|
||||
chunk_str = chunk.decode('utf-8')
|
||||
json_start_pos = chunk_str.find('{"id"')
|
||||
if json_start_pos != -1:
|
||||
json_str = chunk_str[json_start_pos:]
|
||||
json_data = json.loads(json_str)
|
||||
for choice in json_data.get('choices', []):
|
||||
delta = choice.get('delta', {})
|
||||
content = delta.get('content', '')
|
||||
yield {"error_code": 0, "text": content}
|
||||
|
||||
def get_embeddings(self, params):
|
||||
# TODO: 支持embeddings
|
||||
# 临时解决方案,不支持embedding
|
||||
print("embedding")
|
||||
# print(params)
|
||||
print(params)
|
||||
|
||||
def make_conv_template(self, conv_template: str = None, model_path: str = None) -> Conversation:
|
||||
# 这里的是chatglm api的模板,其它API的conv_template需要定制
|
||||
return conv.Conversation(
|
||||
name=self.model_names[0],
|
||||
system_message="你是一个聪明的助手,请根据用户的提示来完成任务",
|
||||
system_message="你是智谱AI小助手,请根据用户的提示来完成任务",
|
||||
messages=[],
|
||||
roles=["Human", "Assistant", "System"],
|
||||
roles=["user", "assistant", "system"],
|
||||
sep="\n###",
|
||||
stop_str="###",
|
||||
)
|
||||
|
||||
@ -503,16 +503,12 @@ def set_httpx_config(
|
||||
no_proxy.append(host)
|
||||
os.environ["NO_PROXY"] = ",".join(no_proxy)
|
||||
|
||||
# TODO: 简单的清除系统代理不是个好的选择,影响太多。似乎修改代理服务器的bypass列表更好。
|
||||
# patch requests to use custom proxies instead of system settings
|
||||
def _get_proxies():
|
||||
return proxies
|
||||
|
||||
import urllib.request
|
||||
urllib.request.getproxies = _get_proxies
|
||||
|
||||
# 自动检查torch可用的设备。分布式部署时,不运行LLM的机器上可以不装torch
|
||||
|
||||
|
||||
def detect_device() -> Literal["cuda", "mps", "cpu"]:
|
||||
try:
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user