mirror of
https://github.com/RYDE-WORK/Langchain-Chatchat.git
synced 2026-01-19 21:37:20 +08:00
修改项目架构
This commit is contained in:
parent
5c9e931a8e
commit
a6184b01be
@ -16,6 +16,8 @@
|
||||
|
||||
🚩 本项目未涉及微调、训练过程,但可利用微调或训练对本项目效果进行优化。
|
||||
|
||||
[TOC]
|
||||
|
||||
## 更新信息
|
||||
|
||||
**[2023/04/07]**
|
||||
@ -76,7 +78,7 @@ Web UI 可以实现如下功能:
|
||||
3. 添加上传文件功能,通过下拉框选择已上传的文件,点击`loading`加载文件,过程中可随时更换加载的文件
|
||||
4. 底部添加`use via API`可对接到自己系统
|
||||
|
||||
或执行 [knowledge_based_chatglm.py](knowledge_based_chatglm.py) 脚本体验**命令行交互**
|
||||
或执行 [knowledge_based_chatglm.py](cli_demo.py) 脚本体验**命令行交互**
|
||||
```commandline
|
||||
python knowledge_based_chatglm.py
|
||||
```
|
||||
|
||||
@ -68,7 +68,7 @@ pip install -r requirements.txt
|
||||
```
|
||||
Attention: With langchain.document_loaders.UnstructuredFileLoader used to connect with local knowledge file, you may need some other dependencies as mentioned in [langchain documentation](https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/unstructured_file.html)
|
||||
|
||||
### 2. Run [knowledge_based_chatglm.py](knowledge_based_chatglm.py) script
|
||||
### 2. Run [knowledge_based_chatglm.py](cli_demo.py) script
|
||||
```commandline
|
||||
python knowledge_based_chatglm.py
|
||||
```
|
||||
|
||||
104
chains/local_doc_qa.py
Normal file
104
chains/local_doc_qa.py
Normal file
@ -0,0 +1,104 @@
|
||||
from langchain.chains import RetrievalQA
|
||||
from langchain.prompts import PromptTemplate
|
||||
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
||||
from langchain.vectorstores import FAISS
|
||||
from langchain.document_loaders import UnstructuredFileLoader
|
||||
from models.chatglm_llm import ChatGLM
|
||||
import sentence_transformers
|
||||
import os
|
||||
from configs.model_config import *
|
||||
import datetime
|
||||
|
||||
# return top-k text chunk from vector store
|
||||
VECTOR_SEARCH_TOP_K = 10
|
||||
|
||||
# LLM input history length
|
||||
LLM_HISTORY_LEN = 3
|
||||
|
||||
# Show reply with source text from input document
|
||||
REPLY_WITH_SOURCE = True
|
||||
|
||||
|
||||
class LocalDocQA:
|
||||
llm: object = None
|
||||
embeddings: object = None
|
||||
|
||||
def init_cfg(self,
|
||||
embedding_model: str = EMBEDDING_MODEL,
|
||||
embedding_device=EMBEDDING_DEVICE,
|
||||
llm_history_len: int = LLM_HISTORY_LEN,
|
||||
llm_model: str = LLM_MODEL,
|
||||
llm_device=LLM_DEVICE
|
||||
):
|
||||
self.llm = ChatGLM()
|
||||
self.llm.load_model(model_name_or_path=llm_model_dict[llm_model],
|
||||
llm_device=llm_device)
|
||||
self.llm.history_len = llm_history_len
|
||||
|
||||
self.embeddings = HuggingFaceEmbeddings(model_name=embedding_model_dict[embedding_model], )
|
||||
self.embeddings.client = sentence_transformers.SentenceTransformer(self.embeddings.model_name,
|
||||
device=embedding_device)
|
||||
|
||||
def init_knowledge_vector_store(self,
|
||||
filepath: str):
|
||||
if not os.path.exists(filepath):
|
||||
print("路径不存在")
|
||||
return None
|
||||
elif os.path.isfile(filepath):
|
||||
file = os.path.split(filepath)[-1]
|
||||
try:
|
||||
loader = UnstructuredFileLoader(filepath, mode="elements")
|
||||
docs = loader.load()
|
||||
print(f"{file} 已成功加载")
|
||||
except:
|
||||
print(f"{file} 未能成功加载")
|
||||
return None
|
||||
elif os.path.isdir(filepath):
|
||||
docs = []
|
||||
for file in os.listdir(filepath):
|
||||
fullfilepath = os.path.join(filepath, file)
|
||||
try:
|
||||
loader = UnstructuredFileLoader(fullfilepath, mode="elements")
|
||||
docs += loader.load()
|
||||
print(f"{file} 已成功加载")
|
||||
except:
|
||||
print(f"{file} 未能成功加载")
|
||||
|
||||
vector_store = FAISS.from_documents(docs, self.embeddings)
|
||||
vs_path = f"""./vector_store/{os.path.splitext(file)}_FAISS_{datetime.datetime.now().strftime("%Y%m%d_%H%M%S")}"""
|
||||
vector_store.save_local(vs_path)
|
||||
return vs_path
|
||||
|
||||
def get_knowledge_based_answer(self,
|
||||
query,
|
||||
vs_path,
|
||||
chat_history=[],
|
||||
top_k=VECTOR_SEARCH_TOP_K):
|
||||
prompt_template = """基于以下已知信息,简洁和专业的来回答用户的问题。
|
||||
如果无法从中得到答案,请说 "根据已知信息无法回答该问题" 或 "没有提供足够的相关信息",不允许在答案中添加编造成分,答案请使用中文。
|
||||
|
||||
已知内容:
|
||||
{context}
|
||||
|
||||
问题:
|
||||
{question}"""
|
||||
prompt = PromptTemplate(
|
||||
template=prompt_template,
|
||||
input_variables=["context", "question"]
|
||||
)
|
||||
self.llm.history = chat_history
|
||||
vector_store = FAISS.load_local(vs_path, self.embeddings)
|
||||
knowledge_chain = RetrievalQA.from_llm(
|
||||
llm=self.llm,
|
||||
retriever=vector_store.as_retriever(search_kwargs={"k": top_k}),
|
||||
prompt=prompt
|
||||
)
|
||||
knowledge_chain.combine_documents_chain.document_prompt = PromptTemplate(
|
||||
input_variables=["page_content"], template="{page_content}"
|
||||
)
|
||||
|
||||
knowledge_chain.return_source_documents = True
|
||||
|
||||
result = knowledge_chain({"query": query})
|
||||
self.llm.history[-1][0] = query
|
||||
return result, self.llm.history
|
||||
33
cli_demo.py
Normal file
33
cli_demo.py
Normal file
@ -0,0 +1,33 @@
|
||||
from configs.model_config import *
|
||||
import datetime
|
||||
from chains.local_doc_qa import LocalDocQA
|
||||
|
||||
# return top-k text chunk from vector store
|
||||
VECTOR_SEARCH_TOP_K = 10
|
||||
|
||||
# LLM input history length
|
||||
LLM_HISTORY_LEN = 3
|
||||
|
||||
# Show reply with source text from input document
|
||||
REPLY_WITH_SOURCE = True
|
||||
|
||||
if __name__ == "__main__":
|
||||
local_doc_qa = LocalDocQA()
|
||||
local_doc_qa.init_cfg(llm_model=LLM_MODEL,
|
||||
embedding_model=EMBEDDING_MODEL,
|
||||
embedding_device=EMBEDDING_DEVICE,
|
||||
llm_history_len=LLM_HISTORY_LEN)
|
||||
vs_path = None
|
||||
while not vs_path:
|
||||
filepath = input("Input your local knowledge file path 请输入本地知识文件路径:")
|
||||
vs_path = local_doc_qa.init_knowledge_vector_store(filepath)
|
||||
history = []
|
||||
while True:
|
||||
query = input("Input your question 请输入问题:")
|
||||
resp, history = local_doc_qa.get_knowledge_based_answer(query=query,
|
||||
vs_path=vs_path,
|
||||
chat_history=history)
|
||||
if REPLY_WITH_SOURCE:
|
||||
print(resp)
|
||||
else:
|
||||
print(resp["result"])
|
||||
31
configs/model_config.py
Normal file
31
configs/model_config.py
Normal file
@ -0,0 +1,31 @@
|
||||
import torch.cuda
|
||||
import torch.backends
|
||||
|
||||
|
||||
embedding_model_dict = {
|
||||
"ernie-tiny": "nghuyong/ernie-3.0-nano-zh",
|
||||
"ernie-base": "nghuyong/ernie-3.0-base-zh",
|
||||
"text2vec": "GanymedeNil/text2vec-large-chinese",
|
||||
"local": "/Users/liuqian/Downloads/ChatGLM-6B/text2vec-large-chinese"
|
||||
}
|
||||
|
||||
# Embedding model name
|
||||
EMBEDDING_MODEL = "local"#"text2vec"
|
||||
|
||||
# Embedding running device
|
||||
EMBEDDING_DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
||||
|
||||
# supported LLM models
|
||||
llm_model_dict = {
|
||||
"chatglm-6b-int4-qe": "THUDM/chatglm-6b-int4-qe",
|
||||
"chatglm-6b-int4": "THUDM/chatglm-6b-int4",
|
||||
"chatglm-6b": "THUDM/chatglm-6b",
|
||||
"local": "/Users/liuqian/Downloads/ChatGLM-6B/chatglm-6b"
|
||||
}
|
||||
|
||||
# LLM model name
|
||||
LLM_MODEL = "local"#"chatglm-6b"
|
||||
|
||||
# LLM running device
|
||||
LLM_DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
||||
|
||||
@ -1,124 +0,0 @@
|
||||
from langchain.chains import RetrievalQA
|
||||
from langchain.prompts import PromptTemplate
|
||||
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
||||
from langchain.vectorstores import FAISS
|
||||
from langchain.document_loaders import UnstructuredFileLoader
|
||||
from chatglm_llm import ChatGLM
|
||||
import sentence_transformers
|
||||
import torch
|
||||
import os
|
||||
import readline
|
||||
|
||||
|
||||
# Global Parameters
|
||||
EMBEDDING_MODEL = "text2vec"
|
||||
VECTOR_SEARCH_TOP_K = 6
|
||||
LLM_MODEL = "chatglm-6b"
|
||||
LLM_HISTORY_LEN = 3
|
||||
DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
||||
|
||||
# Show reply with source text from input document
|
||||
REPLY_WITH_SOURCE = True
|
||||
|
||||
embedding_model_dict = {
|
||||
"ernie-tiny": "nghuyong/ernie-3.0-nano-zh",
|
||||
"ernie-base": "nghuyong/ernie-3.0-base-zh",
|
||||
"text2vec": "GanymedeNil/text2vec-large-chinese",
|
||||
}
|
||||
|
||||
llm_model_dict = {
|
||||
"chatglm-6b-int4-qe": "THUDM/chatglm-6b-int4-qe",
|
||||
"chatglm-6b-int4": "THUDM/chatglm-6b-int4",
|
||||
"chatglm-6b": "THUDM/chatglm-6b",
|
||||
}
|
||||
|
||||
|
||||
def init_cfg(LLM_MODEL, EMBEDDING_MODEL, LLM_HISTORY_LEN, V_SEARCH_TOP_K=6):
|
||||
global chatglm, embeddings, VECTOR_SEARCH_TOP_K
|
||||
VECTOR_SEARCH_TOP_K = V_SEARCH_TOP_K
|
||||
|
||||
chatglm = ChatGLM()
|
||||
chatglm.load_model(model_name_or_path=llm_model_dict[LLM_MODEL])
|
||||
chatglm.history_len = LLM_HISTORY_LEN
|
||||
|
||||
embeddings = HuggingFaceEmbeddings(model_name=embedding_model_dict[EMBEDDING_MODEL],)
|
||||
embeddings.client = sentence_transformers.SentenceTransformer(embeddings.model_name,
|
||||
device=DEVICE)
|
||||
|
||||
|
||||
def init_knowledge_vector_store(filepath:str):
|
||||
if not os.path.exists(filepath):
|
||||
print("路径不存在")
|
||||
return None
|
||||
elif os.path.isfile(filepath):
|
||||
file = os.path.split(filepath)[-1]
|
||||
try:
|
||||
loader = UnstructuredFileLoader(filepath, mode="elements")
|
||||
docs = loader.load()
|
||||
print(f"{file} 已成功加载")
|
||||
except:
|
||||
print(f"{file} 未能成功加载")
|
||||
return None
|
||||
elif os.path.isdir(filepath):
|
||||
docs = []
|
||||
for file in os.listdir(filepath):
|
||||
fullfilepath = os.path.join(filepath, file)
|
||||
try:
|
||||
loader = UnstructuredFileLoader(fullfilepath, mode="elements")
|
||||
docs += loader.load()
|
||||
print(f"{file} 已成功加载")
|
||||
except:
|
||||
print(f"{file} 未能成功加载")
|
||||
|
||||
vector_store = FAISS.from_documents(docs, embeddings)
|
||||
return vector_store
|
||||
|
||||
|
||||
def get_knowledge_based_answer(query, vector_store, chat_history=[]):
|
||||
global chatglm, embeddings
|
||||
|
||||
prompt_template = """基于以下已知信息,简洁和专业的来回答用户的问题。
|
||||
如果无法从中得到答案,请说 "根据已知信息无法回答该问题" 或 "没有提供足够的相关信息",不允许在答案中添加编造成分,答案请使用中文。
|
||||
|
||||
已知内容:
|
||||
{context}
|
||||
|
||||
问题:
|
||||
{question}"""
|
||||
prompt = PromptTemplate(
|
||||
template=prompt_template,
|
||||
input_variables=["context", "question"]
|
||||
)
|
||||
chatglm.history = chat_history
|
||||
knowledge_chain = RetrievalQA.from_llm(
|
||||
llm=chatglm,
|
||||
retriever=vector_store.as_retriever(search_kwargs={"k": VECTOR_SEARCH_TOP_K}),
|
||||
prompt=prompt
|
||||
)
|
||||
knowledge_chain.combine_documents_chain.document_prompt = PromptTemplate(
|
||||
input_variables=["page_content"], template="{page_content}"
|
||||
)
|
||||
|
||||
knowledge_chain.return_source_documents = True
|
||||
|
||||
result = knowledge_chain({"query": query})
|
||||
chatglm.history[-1][0] = query
|
||||
return result, chatglm.history
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
init_cfg(LLM_MODEL, EMBEDDING_MODEL, LLM_HISTORY_LEN)
|
||||
vector_store = None
|
||||
while not vector_store:
|
||||
filepath = input("Input your local knowledge file path 请输入本地知识文件路径:")
|
||||
vector_store = init_knowledge_vector_store(filepath)
|
||||
history = []
|
||||
while True:
|
||||
query = input("Input your question 请输入问题:")
|
||||
resp, history = get_knowledge_based_answer(query=query,
|
||||
vector_store=vector_store,
|
||||
chat_history=history)
|
||||
if REPLY_WITH_SOURCE:
|
||||
print(resp)
|
||||
else:
|
||||
print(resp["result"])
|
||||
@ -3,8 +3,9 @@ from typing import Optional, List
|
||||
from langchain.llms.utils import enforce_stop_tokens
|
||||
from transformers import AutoTokenizer, AutoModel
|
||||
import torch
|
||||
from configs.model_config import LLM_DEVICE
|
||||
|
||||
DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
||||
DEVICE = LLM_DEVICE
|
||||
DEVICE_ID = "0" if torch.cuda.is_available() else None
|
||||
CUDA_DEVICE = f"{DEVICE}:{DEVICE_ID}" if DEVICE_ID else DEVICE
|
||||
|
||||
@ -48,12 +49,14 @@ class ChatGLM(LLM):
|
||||
self.history = self.history+[[None, response]]
|
||||
return response
|
||||
|
||||
def load_model(self, model_name_or_path: str = "THUDM/chatglm-6b"):
|
||||
def load_model(self,
|
||||
model_name_or_path: str = "THUDM/chatglm-6b",
|
||||
llm_device=LLM_DEVICE):
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_name_or_path,
|
||||
trust_remote_code=True
|
||||
)
|
||||
if torch.cuda.is_available():
|
||||
if torch.cuda.is_available() and llm_device.lower().startswith("cuda"):
|
||||
self.model = (
|
||||
AutoModel.from_pretrained(
|
||||
model_name_or_path,
|
||||
@ -61,19 +64,12 @@ class ChatGLM(LLM):
|
||||
.half()
|
||||
.cuda()
|
||||
)
|
||||
elif torch.backends.mps.is_available():
|
||||
self.model = (
|
||||
AutoModel.from_pretrained(
|
||||
model_name_or_path,
|
||||
trust_remote_code=True)
|
||||
.float()
|
||||
.to('mps')
|
||||
)
|
||||
else:
|
||||
self.model = (
|
||||
AutoModel.from_pretrained(
|
||||
model_name_or_path,
|
||||
trust_remote_code=True)
|
||||
.float()
|
||||
.to(llm_device)
|
||||
)
|
||||
self.model = self.model.eval()
|
||||
4
webui.py
4
webui.py
@ -1,7 +1,7 @@
|
||||
import gradio as gr
|
||||
import os
|
||||
import shutil
|
||||
import knowledge_based_chatglm as kb
|
||||
import cli_demo as kb
|
||||
|
||||
|
||||
def get_file_list():
|
||||
@ -108,7 +108,7 @@ with gr.Blocks(css="""
|
||||
value=file_list[0] if len(file_list) > 0 else None)
|
||||
with gr.Tab("upload"):
|
||||
file = gr.File(label="content file",
|
||||
file_types=['.txt', '.md', '.docx']
|
||||
file_types=['.txt', '.md', '.docx', '.pdf']
|
||||
).style(height=100)
|
||||
# 将上传的文件保存到content文件夹下,并更新下拉框
|
||||
file.upload(upload_file,
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user