mirror of
https://github.com/RYDE-WORK/Langchain-Chatchat.git
synced 2026-02-01 11:53:24 +08:00
update text_splitter
This commit is contained in:
parent
5571e20a0a
commit
98a8281b29
@ -1,16 +1,13 @@
|
||||
from langchain.chains import RetrievalQA
|
||||
from langchain.prompts import PromptTemplate
|
||||
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
||||
from langchain.vectorstores import FAISS
|
||||
from langchain.document_loaders import UnstructuredFileLoader
|
||||
from models.chatglm_llm import ChatGLM
|
||||
import sentence_transformers
|
||||
import os
|
||||
from configs.model_config import *
|
||||
import datetime
|
||||
from typing import List
|
||||
from textsplitter import ChineseTextSplitter
|
||||
from typing import List, Tuple
|
||||
from langchain.docstore.document import Document
|
||||
import numpy as np
|
||||
|
||||
# return top-k text chunk from vector store
|
||||
VECTOR_SEARCH_TOP_K = 6
|
||||
@ -48,10 +45,70 @@ def get_docs_with_score(docs_with_score):
|
||||
docs.append(doc)
|
||||
return docs
|
||||
|
||||
|
||||
def seperate_list(ls: List[int]) -> List[List[int]]:
|
||||
lists = []
|
||||
ls1 = [ls[0]]
|
||||
for i in range(1, len(ls)):
|
||||
if ls[i-1] + 1 == ls[i]:
|
||||
ls1.append(ls[i])
|
||||
else:
|
||||
lists.append(ls1)
|
||||
ls1 = [ls[i]]
|
||||
lists.append(ls1)
|
||||
return lists
|
||||
|
||||
|
||||
|
||||
def similarity_search_with_score_by_vector(
|
||||
self,
|
||||
embedding: List[float],
|
||||
k: int = 4,
|
||||
) -> List[Tuple[Document, float]]:
|
||||
scores, indices = self.index.search(np.array([embedding], dtype=np.float32), k)
|
||||
docs = []
|
||||
id_set = set()
|
||||
for j, i in enumerate(indices[0]):
|
||||
if i == -1:
|
||||
# This happens when not enough docs are returned.
|
||||
continue
|
||||
_id = self.index_to_docstore_id[i]
|
||||
doc = self.docstore.search(_id)
|
||||
id_set.add(i)
|
||||
docs_len = len(doc.page_content)
|
||||
for k in range(1, max(i, len(docs)-i)):
|
||||
for l in [i+k, i-k]:
|
||||
if 0 <= l < len(self.index_to_docstore_id):
|
||||
_id0 = self.index_to_docstore_id[l]
|
||||
doc0 = self.docstore.search(_id0)
|
||||
if docs_len + len(doc0.page_content) > self.chunk_size:
|
||||
break
|
||||
elif doc0.metadata["source"] == doc.metadata["source"]:
|
||||
docs_len += len(doc0.page_content)
|
||||
id_set.add(l)
|
||||
id_list = sorted(list(id_set))
|
||||
id_lists = seperate_list(id_list)
|
||||
for id_seq in id_lists:
|
||||
for id in id_seq:
|
||||
if id == id_seq[0]:
|
||||
_id = self.index_to_docstore_id[id]
|
||||
doc = self.docstore.search(_id)
|
||||
else:
|
||||
_id0 = self.index_to_docstore_id[id]
|
||||
doc0 = self.docstore.search(_id0)
|
||||
doc.page_content += doc0.page_content
|
||||
if not isinstance(doc, Document):
|
||||
raise ValueError(f"Could not find document for id {_id}, got {doc}")
|
||||
docs.append((doc, scores[0][j]))
|
||||
return docs
|
||||
|
||||
|
||||
|
||||
class LocalDocQA:
|
||||
llm: object = None
|
||||
embeddings: object = None
|
||||
top_k: int = VECTOR_SEARCH_TOP_K
|
||||
chunk_size: int = CHUNK_SIZE
|
||||
|
||||
def init_cfg(self,
|
||||
embedding_model: str = EMBEDDING_MODEL,
|
||||
@ -133,6 +190,8 @@ class LocalDocQA:
|
||||
streaming=True):
|
||||
self.llm.streaming = streaming
|
||||
vector_store = FAISS.load_local(vs_path, self.embeddings)
|
||||
FAISS.similarity_search_with_score_by_vector = similarity_search_with_score_by_vector
|
||||
vector_store.chunk_size=self.chunk_size
|
||||
related_docs_with_score = vector_store.similarity_search_with_score(query,
|
||||
k=self.top_k)
|
||||
related_docs = get_docs_with_score(related_docs_with_score)
|
||||
|
||||
@ -39,4 +39,7 @@ UPLOAD_ROOT_PATH = os.path.join(os.path.dirname(os.path.dirname(__file__)), "con
|
||||
|
||||
# 基于上下文的prompt模版,请务必保留"{question}"和"{context}"
|
||||
PROMPT_TEMPLATE = """基于以下已知信息,简洁和专业的来回答用户的问题,问题是"{question}"。如果无法从中得到答案,请说 "根据已知信息无法回答该问题" 或 "没有提供足够的相关信息",不允许在答案中添加编造成分,答案请使用中文。已知内容如下:
|
||||
{context} """
|
||||
{context} """
|
||||
|
||||
# 匹配后单段上下文长度
|
||||
CHUNK_SIZE = 500
|
||||
Loading…
x
Reference in New Issue
Block a user