mirror of
https://github.com/RYDE-WORK/Langchain-Chatchat.git
synced 2026-02-05 22:33:24 +08:00
move document_loaders & text_splitter under server
This commit is contained in:
parent
5d422ca9a1
commit
73eb5e2e32
@ -1,6 +1,6 @@
|
|||||||
from typing import List
|
from typing import List
|
||||||
from langchain.document_loaders.unstructured import UnstructuredFileLoader
|
from langchain.document_loaders.unstructured import UnstructuredFileLoader
|
||||||
from document_loaders.ocr import get_ocr
|
from server.document_loaders.ocr import get_ocr
|
||||||
|
|
||||||
|
|
||||||
class RapidOCRLoader(UnstructuredFileLoader):
|
class RapidOCRLoader(UnstructuredFileLoader):
|
||||||
@ -4,7 +4,7 @@ import cv2
|
|||||||
from PIL import Image
|
from PIL import Image
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from configs import PDF_OCR_THRESHOLD
|
from configs import PDF_OCR_THRESHOLD
|
||||||
from document_loaders.ocr import get_ocr
|
from server.document_loaders.ocr import get_ocr
|
||||||
import tqdm
|
import tqdm
|
||||||
|
|
||||||
|
|
||||||
@ -1,5 +1,6 @@
|
|||||||
from abc import ABC, abstractmethod
|
from abc import ABC, abstractmethod
|
||||||
|
|
||||||
|
import operator
|
||||||
import os
|
import os
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from langchain.docstore.document import Document
|
from langchain.docstore.document import Document
|
||||||
|
|||||||
@ -11,7 +11,7 @@ from configs import (
|
|||||||
TEXT_SPLITTER_NAME,
|
TEXT_SPLITTER_NAME,
|
||||||
)
|
)
|
||||||
import importlib
|
import importlib
|
||||||
from text_splitter import zh_title_enhance as func_zh_title_enhance
|
from server.text_splitter import zh_title_enhance as func_zh_title_enhance
|
||||||
import langchain.document_loaders
|
import langchain.document_loaders
|
||||||
from langchain.docstore.document import Document
|
from langchain.docstore.document import Document
|
||||||
from langchain.text_splitter import TextSplitter
|
from langchain.text_splitter import TextSplitter
|
||||||
@ -153,15 +153,15 @@ def get_loader(loader_name: str, file_path: str, loader_kwargs: Dict = None):
|
|||||||
try:
|
try:
|
||||||
if loader_name in ["RapidOCRPDFLoader", "RapidOCRLoader", "FilteredCSVLoader",
|
if loader_name in ["RapidOCRPDFLoader", "RapidOCRLoader", "FilteredCSVLoader",
|
||||||
"RapidOCRDocLoader", "RapidOCRPPTLoader"]:
|
"RapidOCRDocLoader", "RapidOCRPPTLoader"]:
|
||||||
document_loaders_module = importlib.import_module('document_loaders')
|
document_loaders_module = importlib.import_module("server.document_loaders")
|
||||||
else:
|
else:
|
||||||
document_loaders_module = importlib.import_module('langchain.document_loaders')
|
document_loaders_module = importlib.import_module("langchain.document_loaders")
|
||||||
DocumentLoader = getattr(document_loaders_module, loader_name)
|
DocumentLoader = getattr(document_loaders_module, loader_name)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
msg = f"为文件{file_path}查找加载器{loader_name}时出错:{e}"
|
msg = f"为文件{file_path}查找加载器{loader_name}时出错:{e}"
|
||||||
logger.error(f'{e.__class__.__name__}: {msg}',
|
logger.error(f'{e.__class__.__name__}: {msg}',
|
||||||
exc_info=e if log_verbose else None)
|
exc_info=e if log_verbose else None)
|
||||||
document_loaders_module = importlib.import_module('langchain.document_loaders')
|
document_loaders_module = importlib.import_module("langchain.document_loaders")
|
||||||
DocumentLoader = getattr(document_loaders_module, "UnstructuredFileLoader")
|
DocumentLoader = getattr(document_loaders_module, "UnstructuredFileLoader")
|
||||||
|
|
||||||
if loader_name == "UnstructuredFileLoader":
|
if loader_name == "UnstructuredFileLoader":
|
||||||
@ -204,10 +204,10 @@ def make_text_splitter(
|
|||||||
else:
|
else:
|
||||||
|
|
||||||
try: ## 优先使用用户自定义的text_splitter
|
try: ## 优先使用用户自定义的text_splitter
|
||||||
text_splitter_module = importlib.import_module('text_splitter')
|
text_splitter_module = importlib.import_module("server.text_splitter")
|
||||||
TextSplitter = getattr(text_splitter_module, splitter_name)
|
TextSplitter = getattr(text_splitter_module, splitter_name)
|
||||||
except: ## 否则使用langchain的text_splitter
|
except: ## 否则使用langchain的text_splitter
|
||||||
text_splitter_module = importlib.import_module('langchain.text_splitter')
|
text_splitter_module = importlib.import_module("langchain.text_splitter")
|
||||||
TextSplitter = getattr(text_splitter_module, splitter_name)
|
TextSplitter = getattr(text_splitter_module, splitter_name)
|
||||||
|
|
||||||
if text_splitter_dict[splitter_name]["source"] == "tiktoken": ## 从tiktoken加载
|
if text_splitter_dict[splitter_name]["source"] == "tiktoken": ## 从tiktoken加载
|
||||||
|
|||||||
@ -1,123 +0,0 @@
|
|||||||
import sys
|
|
||||||
from fastchat.conversation import Conversation
|
|
||||||
from server.model_workers.base import *
|
|
||||||
from server.utils import get_httpx_client
|
|
||||||
from fastchat import conversation as conv
|
|
||||||
import json, httpx
|
|
||||||
from typing import List, Dict
|
|
||||||
from configs import logger, log_verbose
|
|
||||||
|
|
||||||
|
|
||||||
class GeminiWorker(ApiModelWorker):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
*,
|
|
||||||
controller_addr: str = None,
|
|
||||||
worker_addr: str = None,
|
|
||||||
model_names: List[str] = ["gemini-api"],
|
|
||||||
**kwargs,
|
|
||||||
):
|
|
||||||
kwargs.update(model_names=model_names, controller_addr=controller_addr, worker_addr=worker_addr)
|
|
||||||
kwargs.setdefault("context_len", 4096)
|
|
||||||
super().__init__(**kwargs)
|
|
||||||
|
|
||||||
def create_gemini_messages(self, messages) -> json:
|
|
||||||
has_history = any(msg['role'] == 'assistant' for msg in messages)
|
|
||||||
gemini_msg = []
|
|
||||||
|
|
||||||
for msg in messages:
|
|
||||||
role = msg['role']
|
|
||||||
content = msg['content']
|
|
||||||
if role == 'system':
|
|
||||||
continue
|
|
||||||
if has_history:
|
|
||||||
if role == 'assistant':
|
|
||||||
role = "model"
|
|
||||||
transformed_msg = {"role": role, "parts": [{"text": content}]}
|
|
||||||
else:
|
|
||||||
if role == 'user':
|
|
||||||
transformed_msg = {"parts": [{"text": content}]}
|
|
||||||
|
|
||||||
gemini_msg.append(transformed_msg)
|
|
||||||
|
|
||||||
msg = dict(contents=gemini_msg)
|
|
||||||
return msg
|
|
||||||
|
|
||||||
def do_chat(self, params: ApiChatParams) -> Dict:
|
|
||||||
params.load_config(self.model_names[0])
|
|
||||||
data = self.create_gemini_messages(messages=params.messages)
|
|
||||||
generationConfig = dict(
|
|
||||||
temperature=params.temperature,
|
|
||||||
topK=1,
|
|
||||||
topP=1,
|
|
||||||
maxOutputTokens=4096,
|
|
||||||
stopSequences=[]
|
|
||||||
)
|
|
||||||
|
|
||||||
data['generationConfig'] = generationConfig
|
|
||||||
url = "https://generativelanguage.googleapis.com/v1beta/models/gemini-pro:generateContent" + '?key=' + params.api_key
|
|
||||||
headers = {
|
|
||||||
'Content-Type': 'application/json',
|
|
||||||
}
|
|
||||||
if log_verbose:
|
|
||||||
logger.info(f'{self.__class__.__name__}:url: {url}')
|
|
||||||
logger.info(f'{self.__class__.__name__}:headers: {headers}')
|
|
||||||
logger.info(f'{self.__class__.__name__}:data: {data}')
|
|
||||||
|
|
||||||
text = ""
|
|
||||||
json_string = ""
|
|
||||||
timeout = httpx.Timeout(60.0)
|
|
||||||
client = get_httpx_client(timeout=timeout)
|
|
||||||
with client.stream("POST", url, headers=headers, json=data) as response:
|
|
||||||
for line in response.iter_lines():
|
|
||||||
line = line.strip()
|
|
||||||
if not line or "[DONE]" in line:
|
|
||||||
continue
|
|
||||||
|
|
||||||
json_string += line
|
|
||||||
|
|
||||||
try:
|
|
||||||
resp = json.loads(json_string)
|
|
||||||
if 'candidates' in resp:
|
|
||||||
for candidate in resp['candidates']:
|
|
||||||
content = candidate.get('content', {})
|
|
||||||
parts = content.get('parts', [])
|
|
||||||
for part in parts:
|
|
||||||
if 'text' in part:
|
|
||||||
text += part['text']
|
|
||||||
yield {
|
|
||||||
"error_code": 0,
|
|
||||||
"text": text
|
|
||||||
}
|
|
||||||
print(text)
|
|
||||||
except json.JSONDecodeError as e:
|
|
||||||
print("Failed to decode JSON:", e)
|
|
||||||
print("Invalid JSON string:", json_string)
|
|
||||||
|
|
||||||
def get_embeddings(self, params):
|
|
||||||
print("embedding")
|
|
||||||
print(params)
|
|
||||||
|
|
||||||
def make_conv_template(self, conv_template: str = None, model_path: str = None) -> Conversation:
|
|
||||||
return conv.Conversation(
|
|
||||||
name=self.model_names[0],
|
|
||||||
system_message="You are a helpful, respectful and honest assistant.",
|
|
||||||
messages=[],
|
|
||||||
roles=["user", "assistant"],
|
|
||||||
sep="\n### ",
|
|
||||||
stop_str="###",
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
import uvicorn
|
|
||||||
from server.utils import MakeFastAPIOffline
|
|
||||||
from fastchat.serve.base_model_worker import app
|
|
||||||
|
|
||||||
worker = GeminiWorker(
|
|
||||||
controller_addr="http://127.0.0.1:20001",
|
|
||||||
worker_addr="http://127.0.0.1:21012",
|
|
||||||
)
|
|
||||||
sys.modules["fastchat.serve.model_worker"].worker = worker
|
|
||||||
MakeFastAPIOffline(app)
|
|
||||||
uvicorn.run(app, port=21012)
|
|
||||||
Loading…
x
Reference in New Issue
Block a user