move document_loaders & text_splitter under server

This commit is contained in:
liunux4odoo 2024-02-08 11:58:28 +08:00
parent 5d422ca9a1
commit 73eb5e2e32
15 changed files with 9 additions and 131 deletions

View File

@ -1,6 +1,6 @@
from typing import List
from langchain.document_loaders.unstructured import UnstructuredFileLoader
from document_loaders.ocr import get_ocr
from server.document_loaders.ocr import get_ocr
class RapidOCRLoader(UnstructuredFileLoader):

View File

@ -4,7 +4,7 @@ import cv2
from PIL import Image
import numpy as np
from configs import PDF_OCR_THRESHOLD
from document_loaders.ocr import get_ocr
from server.document_loaders.ocr import get_ocr
import tqdm

View File

@ -1,5 +1,6 @@
from abc import ABC, abstractmethod
import operator
import os
from pathlib import Path
from langchain.docstore.document import Document

View File

@ -11,7 +11,7 @@ from configs import (
TEXT_SPLITTER_NAME,
)
import importlib
from text_splitter import zh_title_enhance as func_zh_title_enhance
from server.text_splitter import zh_title_enhance as func_zh_title_enhance
import langchain.document_loaders
from langchain.docstore.document import Document
from langchain.text_splitter import TextSplitter
@ -153,15 +153,15 @@ def get_loader(loader_name: str, file_path: str, loader_kwargs: Dict = None):
try:
if loader_name in ["RapidOCRPDFLoader", "RapidOCRLoader", "FilteredCSVLoader",
"RapidOCRDocLoader", "RapidOCRPPTLoader"]:
document_loaders_module = importlib.import_module('document_loaders')
document_loaders_module = importlib.import_module("server.document_loaders")
else:
document_loaders_module = importlib.import_module('langchain.document_loaders')
document_loaders_module = importlib.import_module("langchain.document_loaders")
DocumentLoader = getattr(document_loaders_module, loader_name)
except Exception as e:
msg = f"为文件{file_path}查找加载器{loader_name}时出错:{e}"
logger.error(f'{e.__class__.__name__}: {msg}',
exc_info=e if log_verbose else None)
document_loaders_module = importlib.import_module('langchain.document_loaders')
document_loaders_module = importlib.import_module("langchain.document_loaders")
DocumentLoader = getattr(document_loaders_module, "UnstructuredFileLoader")
if loader_name == "UnstructuredFileLoader":
@ -204,10 +204,10 @@ def make_text_splitter(
else:
try: ## 优先使用用户自定义的text_splitter
text_splitter_module = importlib.import_module('text_splitter')
text_splitter_module = importlib.import_module("server.text_splitter")
TextSplitter = getattr(text_splitter_module, splitter_name)
except: ## 否则使用langchain的text_splitter
text_splitter_module = importlib.import_module('langchain.text_splitter')
text_splitter_module = importlib.import_module("langchain.text_splitter")
TextSplitter = getattr(text_splitter_module, splitter_name)
if text_splitter_dict[splitter_name]["source"] == "tiktoken": ## 从tiktoken加载

View File

@ -1,123 +0,0 @@
import sys
from fastchat.conversation import Conversation
from server.model_workers.base import *
from server.utils import get_httpx_client
from fastchat import conversation as conv
import json, httpx
from typing import List, Dict
from configs import logger, log_verbose
class GeminiWorker(ApiModelWorker):
def __init__(
self,
*,
controller_addr: str = None,
worker_addr: str = None,
model_names: List[str] = ["gemini-api"],
**kwargs,
):
kwargs.update(model_names=model_names, controller_addr=controller_addr, worker_addr=worker_addr)
kwargs.setdefault("context_len", 4096)
super().__init__(**kwargs)
def create_gemini_messages(self, messages) -> json:
has_history = any(msg['role'] == 'assistant' for msg in messages)
gemini_msg = []
for msg in messages:
role = msg['role']
content = msg['content']
if role == 'system':
continue
if has_history:
if role == 'assistant':
role = "model"
transformed_msg = {"role": role, "parts": [{"text": content}]}
else:
if role == 'user':
transformed_msg = {"parts": [{"text": content}]}
gemini_msg.append(transformed_msg)
msg = dict(contents=gemini_msg)
return msg
def do_chat(self, params: ApiChatParams) -> Dict:
params.load_config(self.model_names[0])
data = self.create_gemini_messages(messages=params.messages)
generationConfig = dict(
temperature=params.temperature,
topK=1,
topP=1,
maxOutputTokens=4096,
stopSequences=[]
)
data['generationConfig'] = generationConfig
url = "https://generativelanguage.googleapis.com/v1beta/models/gemini-pro:generateContent" + '?key=' + params.api_key
headers = {
'Content-Type': 'application/json',
}
if log_verbose:
logger.info(f'{self.__class__.__name__}:url: {url}')
logger.info(f'{self.__class__.__name__}:headers: {headers}')
logger.info(f'{self.__class__.__name__}:data: {data}')
text = ""
json_string = ""
timeout = httpx.Timeout(60.0)
client = get_httpx_client(timeout=timeout)
with client.stream("POST", url, headers=headers, json=data) as response:
for line in response.iter_lines():
line = line.strip()
if not line or "[DONE]" in line:
continue
json_string += line
try:
resp = json.loads(json_string)
if 'candidates' in resp:
for candidate in resp['candidates']:
content = candidate.get('content', {})
parts = content.get('parts', [])
for part in parts:
if 'text' in part:
text += part['text']
yield {
"error_code": 0,
"text": text
}
print(text)
except json.JSONDecodeError as e:
print("Failed to decode JSON:", e)
print("Invalid JSON string:", json_string)
def get_embeddings(self, params):
print("embedding")
print(params)
def make_conv_template(self, conv_template: str = None, model_path: str = None) -> Conversation:
return conv.Conversation(
name=self.model_names[0],
system_message="You are a helpful, respectful and honest assistant.",
messages=[],
roles=["user", "assistant"],
sep="\n### ",
stop_str="###",
)
if __name__ == "__main__":
import uvicorn
from server.utils import MakeFastAPIOffline
from fastchat.serve.base_model_worker import app
worker = GeminiWorker(
controller_addr="http://127.0.0.1:20001",
worker_addr="http://127.0.0.1:21012",
)
sys.modules["fastchat.serve.model_worker"].worker = worker
MakeFastAPIOffline(app)
uvicorn.run(app, port=21012)