mirror of
https://github.com/RYDE-WORK/Langchain-Chatchat.git
synced 2026-01-19 21:37:20 +08:00
move document_loaders & text_splitter under server
This commit is contained in:
parent
5d422ca9a1
commit
73eb5e2e32
@ -1,6 +1,6 @@
|
||||
from typing import List
|
||||
from langchain.document_loaders.unstructured import UnstructuredFileLoader
|
||||
from document_loaders.ocr import get_ocr
|
||||
from server.document_loaders.ocr import get_ocr
|
||||
|
||||
|
||||
class RapidOCRLoader(UnstructuredFileLoader):
|
||||
@ -4,7 +4,7 @@ import cv2
|
||||
from PIL import Image
|
||||
import numpy as np
|
||||
from configs import PDF_OCR_THRESHOLD
|
||||
from document_loaders.ocr import get_ocr
|
||||
from server.document_loaders.ocr import get_ocr
|
||||
import tqdm
|
||||
|
||||
|
||||
@ -1,5 +1,6 @@
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
import operator
|
||||
import os
|
||||
from pathlib import Path
|
||||
from langchain.docstore.document import Document
|
||||
|
||||
@ -11,7 +11,7 @@ from configs import (
|
||||
TEXT_SPLITTER_NAME,
|
||||
)
|
||||
import importlib
|
||||
from text_splitter import zh_title_enhance as func_zh_title_enhance
|
||||
from server.text_splitter import zh_title_enhance as func_zh_title_enhance
|
||||
import langchain.document_loaders
|
||||
from langchain.docstore.document import Document
|
||||
from langchain.text_splitter import TextSplitter
|
||||
@ -153,15 +153,15 @@ def get_loader(loader_name: str, file_path: str, loader_kwargs: Dict = None):
|
||||
try:
|
||||
if loader_name in ["RapidOCRPDFLoader", "RapidOCRLoader", "FilteredCSVLoader",
|
||||
"RapidOCRDocLoader", "RapidOCRPPTLoader"]:
|
||||
document_loaders_module = importlib.import_module('document_loaders')
|
||||
document_loaders_module = importlib.import_module("server.document_loaders")
|
||||
else:
|
||||
document_loaders_module = importlib.import_module('langchain.document_loaders')
|
||||
document_loaders_module = importlib.import_module("langchain.document_loaders")
|
||||
DocumentLoader = getattr(document_loaders_module, loader_name)
|
||||
except Exception as e:
|
||||
msg = f"为文件{file_path}查找加载器{loader_name}时出错:{e}"
|
||||
logger.error(f'{e.__class__.__name__}: {msg}',
|
||||
exc_info=e if log_verbose else None)
|
||||
document_loaders_module = importlib.import_module('langchain.document_loaders')
|
||||
document_loaders_module = importlib.import_module("langchain.document_loaders")
|
||||
DocumentLoader = getattr(document_loaders_module, "UnstructuredFileLoader")
|
||||
|
||||
if loader_name == "UnstructuredFileLoader":
|
||||
@ -204,10 +204,10 @@ def make_text_splitter(
|
||||
else:
|
||||
|
||||
try: ## 优先使用用户自定义的text_splitter
|
||||
text_splitter_module = importlib.import_module('text_splitter')
|
||||
text_splitter_module = importlib.import_module("server.text_splitter")
|
||||
TextSplitter = getattr(text_splitter_module, splitter_name)
|
||||
except: ## 否则使用langchain的text_splitter
|
||||
text_splitter_module = importlib.import_module('langchain.text_splitter')
|
||||
text_splitter_module = importlib.import_module("langchain.text_splitter")
|
||||
TextSplitter = getattr(text_splitter_module, splitter_name)
|
||||
|
||||
if text_splitter_dict[splitter_name]["source"] == "tiktoken": ## 从tiktoken加载
|
||||
|
||||
@ -1,123 +0,0 @@
|
||||
import sys
|
||||
from fastchat.conversation import Conversation
|
||||
from server.model_workers.base import *
|
||||
from server.utils import get_httpx_client
|
||||
from fastchat import conversation as conv
|
||||
import json, httpx
|
||||
from typing import List, Dict
|
||||
from configs import logger, log_verbose
|
||||
|
||||
|
||||
class GeminiWorker(ApiModelWorker):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
controller_addr: str = None,
|
||||
worker_addr: str = None,
|
||||
model_names: List[str] = ["gemini-api"],
|
||||
**kwargs,
|
||||
):
|
||||
kwargs.update(model_names=model_names, controller_addr=controller_addr, worker_addr=worker_addr)
|
||||
kwargs.setdefault("context_len", 4096)
|
||||
super().__init__(**kwargs)
|
||||
|
||||
def create_gemini_messages(self, messages) -> json:
|
||||
has_history = any(msg['role'] == 'assistant' for msg in messages)
|
||||
gemini_msg = []
|
||||
|
||||
for msg in messages:
|
||||
role = msg['role']
|
||||
content = msg['content']
|
||||
if role == 'system':
|
||||
continue
|
||||
if has_history:
|
||||
if role == 'assistant':
|
||||
role = "model"
|
||||
transformed_msg = {"role": role, "parts": [{"text": content}]}
|
||||
else:
|
||||
if role == 'user':
|
||||
transformed_msg = {"parts": [{"text": content}]}
|
||||
|
||||
gemini_msg.append(transformed_msg)
|
||||
|
||||
msg = dict(contents=gemini_msg)
|
||||
return msg
|
||||
|
||||
def do_chat(self, params: ApiChatParams) -> Dict:
|
||||
params.load_config(self.model_names[0])
|
||||
data = self.create_gemini_messages(messages=params.messages)
|
||||
generationConfig = dict(
|
||||
temperature=params.temperature,
|
||||
topK=1,
|
||||
topP=1,
|
||||
maxOutputTokens=4096,
|
||||
stopSequences=[]
|
||||
)
|
||||
|
||||
data['generationConfig'] = generationConfig
|
||||
url = "https://generativelanguage.googleapis.com/v1beta/models/gemini-pro:generateContent" + '?key=' + params.api_key
|
||||
headers = {
|
||||
'Content-Type': 'application/json',
|
||||
}
|
||||
if log_verbose:
|
||||
logger.info(f'{self.__class__.__name__}:url: {url}')
|
||||
logger.info(f'{self.__class__.__name__}:headers: {headers}')
|
||||
logger.info(f'{self.__class__.__name__}:data: {data}')
|
||||
|
||||
text = ""
|
||||
json_string = ""
|
||||
timeout = httpx.Timeout(60.0)
|
||||
client = get_httpx_client(timeout=timeout)
|
||||
with client.stream("POST", url, headers=headers, json=data) as response:
|
||||
for line in response.iter_lines():
|
||||
line = line.strip()
|
||||
if not line or "[DONE]" in line:
|
||||
continue
|
||||
|
||||
json_string += line
|
||||
|
||||
try:
|
||||
resp = json.loads(json_string)
|
||||
if 'candidates' in resp:
|
||||
for candidate in resp['candidates']:
|
||||
content = candidate.get('content', {})
|
||||
parts = content.get('parts', [])
|
||||
for part in parts:
|
||||
if 'text' in part:
|
||||
text += part['text']
|
||||
yield {
|
||||
"error_code": 0,
|
||||
"text": text
|
||||
}
|
||||
print(text)
|
||||
except json.JSONDecodeError as e:
|
||||
print("Failed to decode JSON:", e)
|
||||
print("Invalid JSON string:", json_string)
|
||||
|
||||
def get_embeddings(self, params):
|
||||
print("embedding")
|
||||
print(params)
|
||||
|
||||
def make_conv_template(self, conv_template: str = None, model_path: str = None) -> Conversation:
|
||||
return conv.Conversation(
|
||||
name=self.model_names[0],
|
||||
system_message="You are a helpful, respectful and honest assistant.",
|
||||
messages=[],
|
||||
roles=["user", "assistant"],
|
||||
sep="\n### ",
|
||||
stop_str="###",
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import uvicorn
|
||||
from server.utils import MakeFastAPIOffline
|
||||
from fastchat.serve.base_model_worker import app
|
||||
|
||||
worker = GeminiWorker(
|
||||
controller_addr="http://127.0.0.1:20001",
|
||||
worker_addr="http://127.0.0.1:21012",
|
||||
)
|
||||
sys.modules["fastchat.serve.model_worker"].worker = worker
|
||||
MakeFastAPIOffline(app)
|
||||
uvicorn.run(app, port=21012)
|
||||
Loading…
x
Reference in New Issue
Block a user