mirror of
https://github.com/RYDE-WORK/Langchain-Chatchat.git
synced 2026-01-29 10:13:20 +08:00
chat_completions接口报文适配
This commit is contained in:
parent
a2df71d9ea
commit
2f1c9bfd11
22
model-providers/model_providers/bootstrap_web/common.py
Normal file
22
model-providers/model_providers/bootstrap_web/common.py
Normal file
@ -0,0 +1,22 @@
|
||||
import typing
|
||||
from subprocess import Popen
|
||||
from typing import Optional
|
||||
|
||||
from model_providers.core.bootstrap.openai_protocol import ChatCompletionStreamResponseChoice, \
|
||||
ChatCompletionStreamResponse, Finish
|
||||
from model_providers.core.utils.generic import jsonify
|
||||
|
||||
if typing.TYPE_CHECKING:
|
||||
from model_providers.core.bootstrap.openai_protocol import ChatCompletionMessage
|
||||
|
||||
|
||||
def create_stream_chunk(
|
||||
request_id: str,
|
||||
model: str,
|
||||
delta: "ChatCompletionMessage",
|
||||
index: Optional[int] = 0,
|
||||
finish_reason: Optional[Finish] = None,
|
||||
) -> str:
|
||||
choice = ChatCompletionStreamResponseChoice(index=index, delta=delta, finish_reason=finish_reason)
|
||||
chunk = ChatCompletionStreamResponse(id=request_id, model=model, choices=[choice])
|
||||
return jsonify(chunk)
|
||||
@ -5,14 +5,14 @@ import multiprocessing as mp
|
||||
import os
|
||||
import pprint
|
||||
import threading
|
||||
from typing import Any, Dict, Optional
|
||||
from typing import Any, Dict, Optional, Union, Tuple, Type, List, cast, Generator, AsyncGenerator
|
||||
|
||||
import tiktoken
|
||||
from fastapi import APIRouter, FastAPI, HTTPException, Request, Response, status
|
||||
from fastapi.middleware.cors import CORSMiddleware
|
||||
from sse_starlette import EventSourceResponse
|
||||
from uvicorn import Config, Server
|
||||
|
||||
from model_providers.bootstrap_web.common import create_stream_chunk
|
||||
from model_providers.core.bootstrap import OpenAIBootstrapBaseWeb
|
||||
from model_providers.core.bootstrap.openai_protocol import (
|
||||
ChatCompletionRequest,
|
||||
@ -22,20 +22,212 @@ from model_providers.core.bootstrap.openai_protocol import (
|
||||
EmbeddingsResponse,
|
||||
FunctionAvailable,
|
||||
ModelCard,
|
||||
ModelList,
|
||||
ModelList, ChatMessage, ChatCompletionMessage, Role, Finish, ChatCompletionResponseChoice, UsageInfo,
|
||||
)
|
||||
from model_providers.core.model_manager import ModelInstance, ModelManager
|
||||
from model_providers.core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk
|
||||
|
||||
from model_providers.core.model_runtime.entities.message_entities import (
|
||||
UserPromptMessage,
|
||||
UserPromptMessage, PromptMessage, AssistantPromptMessage, ToolPromptMessage, SystemPromptMessage,
|
||||
PromptMessageContent, PromptMessageContentType, TextPromptMessageContent, ImagePromptMessageContent,
|
||||
PromptMessageTool,
|
||||
)
|
||||
from model_providers.core.model_runtime.entities.model_entities import (
|
||||
AIModelEntity,
|
||||
ModelType,
|
||||
)
|
||||
from model_providers.core.model_runtime.errors.invoke import InvokeError
|
||||
from model_providers.core.utils.generic import dictify, jsonify
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
MessageLike = Union[ChatMessage, PromptMessage]
|
||||
|
||||
MessageLikeRepresentation = Union[
|
||||
MessageLike,
|
||||
Tuple[Union[str, Type], Union[str, List[dict], List[object]]],
|
||||
str,
|
||||
]
|
||||
|
||||
|
||||
def _convert_prompt_message_to_dict(message: PromptMessage) -> dict:
|
||||
"""
|
||||
Convert PromptMessage to dict for OpenAI Compatibility API
|
||||
"""
|
||||
if isinstance(message, UserPromptMessage):
|
||||
message = cast(UserPromptMessage, message)
|
||||
if isinstance(message.content, str):
|
||||
message_dict = {"role": "user", "content": message.content}
|
||||
else:
|
||||
raise ValueError("User message content must be str")
|
||||
elif isinstance(message, AssistantPromptMessage):
|
||||
message = cast(AssistantPromptMessage, message)
|
||||
message_dict = {"role": "assistant", "content": message.content}
|
||||
if message.tool_calls and len(message.tool_calls) > 0:
|
||||
message_dict["function_call"] = {
|
||||
"name": message.tool_calls[0].function.name,
|
||||
"arguments": message.tool_calls[0].function.arguments,
|
||||
}
|
||||
elif isinstance(message, SystemPromptMessage):
|
||||
message = cast(SystemPromptMessage, message)
|
||||
message_dict = {"role": "system", "content": message.content}
|
||||
elif isinstance(message, ToolPromptMessage):
|
||||
# check if last message is user message
|
||||
message = cast(ToolPromptMessage, message)
|
||||
message_dict = {"role": "function", "content": message.content}
|
||||
else:
|
||||
raise ValueError(f"Unknown message type {type(message)}")
|
||||
|
||||
return message_dict
|
||||
|
||||
|
||||
def _create_template_from_message_type(
|
||||
message_type: str, template: Union[str, list]
|
||||
) -> PromptMessage:
|
||||
"""Create a message prompt template from a message type and template string.
|
||||
|
||||
Args:
|
||||
message_type: str the type of the message template (e.g., "human", "ai", etc.)
|
||||
template: str the template string.
|
||||
|
||||
Returns:
|
||||
a message prompt template of the appropriate type.
|
||||
"""
|
||||
if isinstance(template, str):
|
||||
content = template
|
||||
elif isinstance(template, list):
|
||||
content = []
|
||||
for tmpl in template:
|
||||
if isinstance(tmpl, str) or isinstance(tmpl, dict) and "text" in tmpl:
|
||||
if isinstance(tmpl, str):
|
||||
text: str = tmpl
|
||||
else:
|
||||
text = cast(dict, tmpl)["text"] # type: ignore[assignment] # noqa: E501
|
||||
content.append(
|
||||
TextPromptMessageContent(data=text)
|
||||
)
|
||||
elif isinstance(tmpl, dict) and "image_url" in tmpl:
|
||||
img_template = cast(dict, tmpl)["image_url"]
|
||||
if isinstance(img_template, str):
|
||||
img_template_obj = ImagePromptMessageContent(data=img_template)
|
||||
elif isinstance(img_template, dict):
|
||||
img_template = dict(img_template)
|
||||
if "url" in img_template:
|
||||
url = img_template["url"]
|
||||
else:
|
||||
url = None
|
||||
img_template_obj = ImagePromptMessageContent(data=url)
|
||||
else:
|
||||
raise ValueError()
|
||||
content.append(img_template_obj)
|
||||
else:
|
||||
raise ValueError()
|
||||
else:
|
||||
raise ValueError()
|
||||
|
||||
if message_type in ("human", "user"):
|
||||
_message = UserPromptMessage(content=content)
|
||||
elif message_type in ("ai", "assistant"):
|
||||
_message = AssistantPromptMessage(content=content)
|
||||
elif message_type == "system":
|
||||
_message = SystemPromptMessage(content=content)
|
||||
elif message_type in ("function", "tool"):
|
||||
_message = ToolPromptMessage(content=content)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unexpected message type: {message_type}. Use one of 'human',"
|
||||
f" 'user', 'ai', 'assistant', or 'system' and 'function' or 'tool'."
|
||||
)
|
||||
|
||||
return _message
|
||||
|
||||
|
||||
def _convert_to_message(
|
||||
message: MessageLikeRepresentation,
|
||||
) -> Union[PromptMessage]:
|
||||
"""Instantiate a message from a variety of message formats.
|
||||
|
||||
The message format can be one of the following:
|
||||
|
||||
- BaseMessagePromptTemplate
|
||||
- BaseMessage
|
||||
- 2-tuple of (role string, template); e.g., ("human", "{user_input}")
|
||||
- 2-tuple of (message class, template)
|
||||
- string: shorthand for ("human", template); e.g., "{user_input}"
|
||||
|
||||
Args:
|
||||
message: a representation of a message in one of the supported formats
|
||||
|
||||
Returns:
|
||||
an instance of a message or a message template
|
||||
"""
|
||||
if isinstance(message, ChatMessage):
|
||||
_message = _create_template_from_message_type(message.role.to_origin_role(), message.content)
|
||||
|
||||
elif isinstance(message, PromptMessage):
|
||||
_message = message
|
||||
elif isinstance(message, str):
|
||||
_message = _create_template_from_message_type("human", message)
|
||||
elif isinstance(message, tuple):
|
||||
if len(message) != 2:
|
||||
raise ValueError(f"Expected 2-tuple of (role, template), got {message}")
|
||||
message_type_str, template = message
|
||||
if isinstance(message_type_str, str):
|
||||
_message = _create_template_from_message_type(message_type_str, template)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Expected message type string, got {message_type_str}"
|
||||
)
|
||||
else:
|
||||
raise NotImplementedError(f"Unsupported message type: {type(message)}")
|
||||
|
||||
return _message
|
||||
|
||||
|
||||
async def _stream_openai_chat_completion(response: Generator) -> AsyncGenerator[str, None]:
|
||||
request_id, model = None, None
|
||||
for chunk in response:
|
||||
if not isinstance(chunk, LLMResultChunk):
|
||||
yield "[ERROR]"
|
||||
return
|
||||
|
||||
if model is None:
|
||||
model = chunk.model
|
||||
if request_id is None:
|
||||
request_id = "request_id"
|
||||
yield create_stream_chunk(request_id, model, ChatCompletionMessage(role=Role.ASSISTANT, content=""))
|
||||
|
||||
new_token = chunk.delta.message.content
|
||||
|
||||
if new_token:
|
||||
delta = ChatCompletionMessage(role=Role.value_of(chunk.delta.message.role.to_origin_role()),
|
||||
content=new_token,
|
||||
tool_calls=chunk.delta.message.tool_calls)
|
||||
yield create_stream_chunk(request_id=request_id,
|
||||
model=model, delta=delta,
|
||||
index=chunk.delta.index,
|
||||
finish_reason=chunk.delta.finish_reason)
|
||||
|
||||
yield create_stream_chunk(request_id, model, ChatCompletionMessage(), finish_reason=Finish.STOP)
|
||||
yield "[DONE]"
|
||||
|
||||
|
||||
async def _openai_chat_completion(response: LLMResult) -> ChatCompletionResponse:
|
||||
choice = ChatCompletionResponseChoice(
|
||||
index=0, message=ChatCompletionMessage(**_convert_prompt_message_to_dict(message=response.message)),
|
||||
finish_reason=Finish.STOP
|
||||
)
|
||||
usage = UsageInfo(
|
||||
prompt_tokens=response.usage.prompt_tokens,
|
||||
completion_tokens=response.usage.completion_tokens,
|
||||
total_tokens=response.usage.total_tokens,
|
||||
)
|
||||
return ChatCompletionResponse(
|
||||
id="request_id",
|
||||
model=response.model,
|
||||
choices=[choice],
|
||||
usage=usage,
|
||||
)
|
||||
|
||||
|
||||
class RESTFulOpenAIBootstrapBaseWeb(OpenAIBootstrapBaseWeb):
|
||||
"""
|
||||
@ -143,7 +335,7 @@ class RESTFulOpenAIBootstrapBaseWeb(OpenAIBootstrapBaseWeb):
|
||||
return ModelList(data=models_list)
|
||||
|
||||
async def create_embeddings(
|
||||
self, provider: str, request: Request, embeddings_request: EmbeddingsRequest
|
||||
self, provider: str, request: Request, embeddings_request: EmbeddingsRequest
|
||||
):
|
||||
logger.info(
|
||||
f"Received create_embeddings request: {pprint.pformat(embeddings_request.dict())}"
|
||||
@ -153,7 +345,7 @@ class RESTFulOpenAIBootstrapBaseWeb(OpenAIBootstrapBaseWeb):
|
||||
return EmbeddingsResponse(**dictify(response))
|
||||
|
||||
async def create_chat_completion(
|
||||
self, provider: str, request: Request, chat_request: ChatCompletionRequest
|
||||
self, provider: str, request: Request, chat_request: ChatCompletionRequest
|
||||
):
|
||||
logger.info(
|
||||
f"Received chat completion request: {pprint.pformat(chat_request.dict())}"
|
||||
@ -162,38 +354,47 @@ class RESTFulOpenAIBootstrapBaseWeb(OpenAIBootstrapBaseWeb):
|
||||
model_instance = self._provider_manager.get_model_instance(
|
||||
provider=provider, model_type=ModelType.LLM, model=chat_request.model
|
||||
)
|
||||
if chat_request.stream:
|
||||
# Invoke model
|
||||
prompt_messages = [_convert_to_message(message) for message in chat_request.messages]
|
||||
|
||||
tools = [PromptMessageTool(name=f.function.name,
|
||||
description=f.function.description,
|
||||
parameters=f.function.parameters
|
||||
)
|
||||
|
||||
for f in chat_request.tools]
|
||||
if chat_request.functions:
|
||||
tools.extend([PromptMessageTool(name=f.name,
|
||||
description=f.description,
|
||||
parameters=f.parameters
|
||||
) for f in chat_request.functions])
|
||||
|
||||
try:
|
||||
|
||||
response = model_instance.invoke_llm(
|
||||
prompt_messages=[UserPromptMessage(content="北京今天的天气怎么样")],
|
||||
prompt_messages=prompt_messages,
|
||||
model_parameters={**chat_request.to_model_parameters_dict()},
|
||||
tools=tools,
|
||||
stop=chat_request.stop,
|
||||
stream=chat_request.stream,
|
||||
user="abc-123",
|
||||
)
|
||||
|
||||
return EventSourceResponse(response, media_type="text/event-stream")
|
||||
else:
|
||||
# Invoke model
|
||||
if chat_request.stream:
|
||||
|
||||
response = model_instance.invoke_llm(
|
||||
prompt_messages=[UserPromptMessage(content="北京今天的天气怎么样")],
|
||||
model_parameters={**chat_request.to_model_parameters_dict()},
|
||||
stop=chat_request.stop,
|
||||
stream=chat_request.stream,
|
||||
user="abc-123",
|
||||
)
|
||||
return EventSourceResponse(_stream_openai_chat_completion(response), media_type="text/event-stream")
|
||||
else:
|
||||
return await _openai_chat_completion(response)
|
||||
except ValueError as e:
|
||||
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail=str(e))
|
||||
|
||||
chat_response = ChatCompletionResponse(**dictify(response))
|
||||
|
||||
return chat_response
|
||||
except InvokeError as e:
|
||||
raise HTTPException(status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail=str(e))
|
||||
|
||||
|
||||
def run(
|
||||
cfg: Dict,
|
||||
logging_conf: Optional[dict] = None,
|
||||
started_event: mp.Event = None,
|
||||
cfg: Dict,
|
||||
logging_conf: Optional[dict] = None,
|
||||
started_event: mp.Event = None,
|
||||
):
|
||||
logging.config.dictConfig(logging_conf) # type: ignore
|
||||
try:
|
||||
|
||||
@ -13,12 +13,62 @@ class Role(str, Enum):
|
||||
FUNCTION = "function"
|
||||
TOOL = "tool"
|
||||
|
||||
@classmethod
|
||||
def value_of(cls, origin_role: str) -> "Role":
|
||||
if origin_role == "user":
|
||||
return cls.USER
|
||||
elif origin_role == "assistant":
|
||||
return cls.ASSISTANT
|
||||
elif origin_role == "system":
|
||||
return cls.SYSTEM
|
||||
elif origin_role == "function":
|
||||
return cls.FUNCTION
|
||||
elif origin_role == "tool":
|
||||
return cls.TOOL
|
||||
else:
|
||||
raise ValueError(f"invalid origin role {origin_role}")
|
||||
|
||||
def to_origin_role(self) -> str:
|
||||
if self == self.USER:
|
||||
return "user"
|
||||
elif self == self.ASSISTANT:
|
||||
return "assistant"
|
||||
elif self == self.SYSTEM:
|
||||
return "system"
|
||||
elif self == self.FUNCTION:
|
||||
return "function"
|
||||
elif self == self.TOOL:
|
||||
return "tool"
|
||||
else:
|
||||
raise ValueError(f"invalid role {self}")
|
||||
|
||||
|
||||
class Finish(str, Enum):
|
||||
STOP = "stop"
|
||||
LENGTH = "length"
|
||||
TOOL = "tool_calls"
|
||||
|
||||
@classmethod
|
||||
def value_of(cls, origin_finish: str) -> "Finish":
|
||||
if origin_finish == "stop":
|
||||
return cls.STOP
|
||||
elif origin_finish == "length":
|
||||
return cls.LENGTH
|
||||
elif origin_finish == "tool_calls":
|
||||
return cls.TOOL
|
||||
else:
|
||||
raise ValueError(f"invalid origin finish {origin_finish}")
|
||||
|
||||
def to_origin_finish(self) -> str:
|
||||
if self == self.STOP:
|
||||
return "stop"
|
||||
elif self == self.LENGTH:
|
||||
return "length"
|
||||
elif self == self.TOOL:
|
||||
return "tool_calls"
|
||||
else:
|
||||
raise ValueError(f"invalid finish {self}")
|
||||
|
||||
|
||||
class ModelCard(BaseModel):
|
||||
id: str
|
||||
@ -95,7 +145,7 @@ class ChatCompletionRequest(BaseModel):
|
||||
top_k: Optional[float] = None
|
||||
n: int = 1
|
||||
max_tokens: Optional[int] = None
|
||||
stop: Optional[list[str]] = (None,)
|
||||
stop: Optional[list[str]] = None
|
||||
stream: Optional[bool] = False
|
||||
|
||||
def to_model_parameters_dict(self, *args, **kwargs):
|
||||
|
||||
@ -28,6 +28,23 @@ class PromptMessageRole(Enum):
|
||||
return mode
|
||||
raise ValueError(f"invalid prompt message type value {value}")
|
||||
|
||||
def to_origin_role(self) -> str:
|
||||
"""
|
||||
Get origin role from prompt message role.
|
||||
|
||||
:return: origin role
|
||||
"""
|
||||
if self == self.SYSTEM:
|
||||
return "system"
|
||||
elif self == self.USER:
|
||||
return "user"
|
||||
elif self == self.ASSISTANT:
|
||||
return "assistant"
|
||||
elif self == self.TOOL:
|
||||
return "tool"
|
||||
else:
|
||||
raise ValueError(f"invalid role {self}")
|
||||
|
||||
|
||||
class PromptMessageTool(BaseModel):
|
||||
"""
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user