mirror of
https://github.com/RYDE-WORK/Langchain-Chatchat.git
synced 2026-02-01 11:53:24 +08:00
commit
2c92f426d9
82
README.md
82
README.md
@ -1,12 +1,13 @@
|
||||

|
||||
|
||||
|
||||
🌍 [READ THIS IN ENGLISH](README_en.md)
|
||||
|
||||
📃 **LangChain-Chatchat** (原 Langchain-ChatGLM)
|
||||
|
||||
基于 ChatGLM 等大语言模型与 Langchain 等应用框架实现,开源、可离线部署的检索增强生成(RAG)大模型知识库项目。
|
||||
|
||||
⚠️`0.2.10`将会是`0.2.x`系列的最后一个版本,`0.2.x`系列版本将会停止更新和技术支持,全力研发具有更强应用性的 `Langchain-Chatchat 0.3.x`。
|
||||
|
||||
---
|
||||
|
||||
## 目录
|
||||
@ -14,23 +15,31 @@
|
||||
* [介绍](README.md#介绍)
|
||||
* [解决的痛点](README.md#解决的痛点)
|
||||
* [快速上手](README.md#快速上手)
|
||||
* [1. 环境配置](README.md#1-环境配置)
|
||||
* [2. 模型下载](README.md#2-模型下载)
|
||||
* [3. 初始化知识库和配置文件](README.md#3-初始化知识库和配置文件)
|
||||
* [4. 一键启动](README.md#4-一键启动)
|
||||
* [5. 启动界面示例](README.md#5-启动界面示例)
|
||||
* [1. 环境配置](README.md#1-环境配置)
|
||||
* [2. 模型下载](README.md#2-模型下载)
|
||||
* [3. 初始化知识库和配置文件](README.md#3-初始化知识库和配置文件)
|
||||
* [4. 一键启动](README.md#4-一键启动)
|
||||
* [5. 启动界面示例](README.md#5-启动界面示例)
|
||||
* [联系我们](README.md#联系我们)
|
||||
|
||||
|
||||
## 介绍
|
||||
|
||||
🤖️ 一种利用 [langchain](https://github.com/hwchase17/langchain) 思想实现的基于本地知识库的问答应用,目标期望建立一套对中文场景与开源模型支持友好、可离线运行的知识库问答解决方案。
|
||||
🤖️ 一种利用 [langchain](https://github.com/langchain-ai/langchain)
|
||||
思想实现的基于本地知识库的问答应用,目标期望建立一套对中文场景与开源模型支持友好、可离线运行的知识库问答解决方案。
|
||||
|
||||
💡 受 [GanymedeNil](https://github.com/GanymedeNil) 的项目 [document.ai](https://github.com/GanymedeNil/document.ai) 和 [AlexZhangji](https://github.com/AlexZhangji) 创建的 [ChatGLM-6B Pull Request](https://github.com/THUDM/ChatGLM-6B/pull/216) 启发,建立了全流程可使用开源模型实现的本地知识库问答应用。本项目的最新版本中通过使用 [FastChat](https://github.com/lm-sys/FastChat) 接入 Vicuna, Alpaca, LLaMA, Koala, RWKV 等模型,依托于 [langchain](https://github.com/langchain-ai/langchain) 框架支持通过基于 [FastAPI](https://github.com/tiangolo/fastapi) 提供的 API 调用服务,或使用基于 [Streamlit](https://github.com/streamlit/streamlit) 的 WebUI 进行操作。
|
||||
💡 受 [GanymedeNil](https://github.com/GanymedeNil) 的项目 [document.ai](https://github.com/GanymedeNil/document.ai)
|
||||
和 [AlexZhangji](https://github.com/AlexZhangji)
|
||||
创建的 [ChatGLM-6B Pull Request](https://github.com/THUDM/ChatGLM-6B/pull/216)
|
||||
启发,建立了全流程可使用开源模型实现的本地知识库问答应用。本项目的最新版本中通过使用 [FastChat](https://github.com/lm-sys/FastChat)
|
||||
接入 Vicuna, Alpaca, LLaMA, Koala, RWKV 等模型,依托于 [langchain](https://github.com/langchain-ai/langchain)
|
||||
框架支持通过基于 [FastAPI](https://github.com/tiangolo/fastapi) 提供的 API
|
||||
调用服务,或使用基于 [Streamlit](https://github.com/streamlit/streamlit) 的 WebUI 进行操作。
|
||||
|
||||
✅ 依托于本项目支持的开源 LLM 与 Embedding 模型,本项目可实现全部使用**开源**模型**离线私有部署**。与此同时,本项目也支持 OpenAI GPT API 的调用,并将在后续持续扩充对各类模型及模型 API 的接入。
|
||||
✅ 依托于本项目支持的开源 LLM 与 Embedding 模型,本项目可实现全部使用**开源**模型**离线私有部署**。与此同时,本项目也支持
|
||||
OpenAI GPT API 的调用,并将在后续持续扩充对各类模型及模型 API 的接入。
|
||||
|
||||
⛓️ 本项目实现原理如下图所示,过程包括加载文件 -> 读取文本 -> 文本分割 -> 文本向量化 -> 问句向量化 -> 在文本向量中匹配出与问句向量最相似的 `top k`个 -> 匹配出的文本作为上下文和问题一起添加到 `prompt`中 -> 提交给 `LLM`生成回答。
|
||||
⛓️ 本项目实现原理如下图所示,过程包括加载文件 -> 读取文本 -> 文本分割 -> 文本向量化 -> 问句向量化 ->
|
||||
在文本向量中匹配出与问句向量最相似的 `top k`个 -> 匹配出的文本作为上下文和问题一起添加到 `prompt`中 -> 提交给 `LLM`生成回答。
|
||||
|
||||
📺 [原理介绍视频](https://www.bilibili.com/video/BV13M4y1e7cN/?share_source=copy_web&vd_source=e6c5aafe684f30fbe41925d61ca6d514)
|
||||
|
||||
@ -42,7 +51,8 @@
|
||||
|
||||
🚩 本项目未涉及微调、训练过程,但可利用微调或训练对本项目效果进行优化。
|
||||
|
||||
🌐 [AutoDL 镜像](https://www.codewithgpu.com/i/chatchat-space/Langchain-Chatchat/Langchain-Chatchat) 中 `v13` 版本所使用代码已更新至本项目 `v0.2.9` 版本。
|
||||
🌐 [AutoDL 镜像](https://www.codewithgpu.com/i/chatchat-space/Langchain-Chatchat/Langchain-Chatchat) 中 `v13`
|
||||
版本所使用代码已更新至本项目 `v0.2.9` 版本。
|
||||
|
||||
🐳 [Docker 镜像](registry.cn-beijing.aliyuncs.com/chatchat/chatchat:0.2.6) 已经更新到 ```0.2.7``` 版本。
|
||||
|
||||
@ -52,7 +62,10 @@
|
||||
docker run -d --gpus all -p 80:8501 registry.cn-beijing.aliyuncs.com/chatchat/chatchat:0.2.7
|
||||
```
|
||||
|
||||
🧩 本项目有一个非常完整的[Wiki](https://github.com/chatchat-space/Langchain-Chatchat/wiki/) , README只是一个简单的介绍,__仅仅是入门教程,能够基础运行__。 如果你想要更深入的了解本项目,或者想对本项目做出贡献。请移步 [Wiki](https://github.com/chatchat-space/Langchain-Chatchat/wiki/) 界面
|
||||
🧩 本项目有一个非常完整的[Wiki](https://github.com/chatchat-space/Langchain-Chatchat/wiki/) , README只是一个简单的介绍,_
|
||||
_仅仅是入门教程,能够基础运行__。
|
||||
如果你想要更深入的了解本项目,或者想对本项目做出贡献。请移步 [Wiki](https://github.com/chatchat-space/Langchain-Chatchat/wiki/)
|
||||
界面
|
||||
|
||||
## 解决的痛点
|
||||
|
||||
@ -62,17 +75,19 @@ docker run -d --gpus all -p 80:8501 registry.cn-beijing.aliyuncs.com/chatchat/ch
|
||||
我们支持市面上主流的本地大语言模型和Embedding模型,支持开源的本地向量数据库。
|
||||
支持列表详见[Wiki](https://github.com/chatchat-space/Langchain-Chatchat/wiki/)
|
||||
|
||||
|
||||
## 快速上手
|
||||
|
||||
### 1. 环境配置
|
||||
|
||||
+ 首先,确保你的机器安装了 Python 3.8 - 3.11
|
||||
+ 首先,确保你的机器安装了 Python 3.8 - 3.11 (我们强烈推荐使用 Python3.11)。
|
||||
|
||||
```
|
||||
$ python --version
|
||||
Python 3.11.7
|
||||
```
|
||||
|
||||
接着,创建一个虚拟环境,并在虚拟环境内安装项目的依赖
|
||||
|
||||
```shell
|
||||
|
||||
# 拉取仓库
|
||||
@ -88,33 +103,44 @@ $ pip install -r requirements_webui.txt
|
||||
|
||||
# 默认依赖包括基本运行环境(FAISS向量库)。如果要使用 milvus/pg_vector 等向量库,请将 requirements.txt 中相应依赖取消注释再安装。
|
||||
```
|
||||
请注意,LangChain-Chatchat `0.2.x` 系列是针对 Langchain `0.0.x` 系列版本的,如果你使用的是 Langchain `0.1.x` 系列版本,需要降级。
|
||||
|
||||
请注意,LangChain-Chatchat `0.2.x` 系列是针对 Langchain `0.0.x` 系列版本的,如果你使用的是 Langchain `0.1.x`
|
||||
系列版本,需要降级您的`Langchain`版本。
|
||||
|
||||
### 2, 模型下载
|
||||
|
||||
如需在本地或离线环境下运行本项目,需要首先将项目所需的模型下载至本地,通常开源 LLM 与 Embedding 模型可以从 [HuggingFace](https://huggingface.co/models) 下载。
|
||||
如需在本地或离线环境下运行本项目,需要首先将项目所需的模型下载至本地,通常开源 LLM 与 Embedding
|
||||
模型可以从 [HuggingFace](https://huggingface.co/models) 下载。
|
||||
|
||||
以本项目中默认使用的 LLM 模型 [THUDM/ChatGLM3-6B](https://huggingface.co/THUDM/chatglm3-6b) 与 Embedding 模型 [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) 为例:
|
||||
以本项目中默认使用的 LLM 模型 [THUDM/ChatGLM3-6B](https://huggingface.co/THUDM/chatglm3-6b) 与 Embedding
|
||||
模型 [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) 为例:
|
||||
|
||||
下载模型需要先[安装 Git LFS](https://docs.github.com/zh/repositories/working-with-files/managing-large-files/installing-git-large-file-storage),然后运行
|
||||
下载模型需要先[安装 Git LFS](https://docs.github.com/zh/repositories/working-with-files/managing-large-files/installing-git-large-file-storage)
|
||||
,然后运行
|
||||
|
||||
```Shell
|
||||
$ git lfs install
|
||||
$ git clone https://huggingface.co/THUDM/chatglm3-6b
|
||||
$ git clone https://huggingface.co/BAAI/bge-large-zh
|
||||
```
|
||||
|
||||
### 3. 初始化知识库和配置文件
|
||||
|
||||
按照下列方式初始化自己的知识库和简单的复制配置文件
|
||||
|
||||
```shell
|
||||
$ python copy_config_example.py
|
||||
$ python init_database.py --recreate-vs
|
||||
```
|
||||
|
||||
### 4. 一键启动
|
||||
|
||||
按照以下命令启动项目
|
||||
|
||||
```shell
|
||||
$ python startup.py -a
|
||||
```
|
||||
|
||||
### 5. 启动界面示例
|
||||
|
||||
如果正常启动,你将能看到以下界面
|
||||
@ -133,29 +159,37 @@ $ python startup.py -a
|
||||
|
||||

|
||||
|
||||
|
||||
### 注意
|
||||
|
||||
以上方式只是为了快速上手,如果需要更多的功能和自定义启动方式 ,请参考[Wiki](https://github.com/chatchat-space/Langchain-Chatchat/wiki/)
|
||||
以上方式只是为了快速上手,如果需要更多的功能和自定义启动方式
|
||||
,请参考[Wiki](https://github.com/chatchat-space/Langchain-Chatchat/wiki/)
|
||||
|
||||
|
||||
---
|
||||
|
||||
## 项目里程碑
|
||||
|
||||
+ `2023年4月`: `Langchain-ChatGLM 0.1.0` 发布,支持基于 ChatGLM-6B 模型的本地知识库问答。
|
||||
+ `2023年8月`: `Langchain-ChatGLM` 改名为 `Langchain-Chatchat`,`0.2.0` 发布,使用 `fastchat` 作为模型加载方案,支持更多的模型和数据库。
|
||||
+ `2023年10月`: `Langchain-Chatchat 0.2.5` 发布,推出 Agent 内容,开源项目在`Founder Park & Zhipu AI & Zilliz` 举办的黑客马拉松获得三等奖。
|
||||
+ `2023年10月`: `Langchain-Chatchat 0.2.5` 发布,推出 Agent 内容,开源项目在`Founder Park & Zhipu AI & Zilliz`
|
||||
举办的黑客马拉松获得三等奖。
|
||||
+ `2023年12月`: `Langchain-Chatchat` 开源项目获得超过 **20K** stars.
|
||||
+ `2024年1月`: `LangChain 0.1.x` 推出,`Langchain-Chatchat 0.2.x` 停止更新和技术支持,全力研发具有更强应用性的 `Langchain-Chatchat 0.3.x`。
|
||||
+ `2024年1月`: `LangChain 0.1.x` 推出,`Langchain-Chatchat 0.2.x` 发布稳定版本`0.2.10`
|
||||
后将停止更新和技术支持,全力研发具有更强应用性的 `Langchain-Chatchat 0.3.x`。
|
||||
|
||||
+ 🔥 让我们一起期待未来 Chatchat 的故事 ···
|
||||
|
||||
---
|
||||
|
||||
## 联系我们
|
||||
|
||||
### Telegram
|
||||
|
||||
[](https://t.me/+RjliQ3jnJ1YyN2E9)
|
||||
|
||||
### 项目交流群
|
||||
<img src="img/qr_code_85.jpg" alt="二维码" width="300" />
|
||||
|
||||
<img src="img/qr_code_87.jpg" alt="二维码" width="300" />
|
||||
|
||||
🎉 Langchain-Chatchat 项目微信交流群,如果你也对本项目感兴趣,欢迎加入群聊参与讨论交流。
|
||||
|
||||
|
||||
34
README_en.md
34
README_en.md
@ -7,6 +7,10 @@
|
||||
A LLM application aims to implement knowledge and search engine based QA based on Langchain and open-source or remote
|
||||
LLM API.
|
||||
|
||||
⚠️`0.2.10` will be the last version of the `0.2.x` series. The `0.2.x` series will stop updating and technical support,
|
||||
and strive to develop `Langchain-Chachat 0.3.x with stronger applicability. `.
|
||||
|
||||
|
||||
---
|
||||
|
||||
## Table of Contents
|
||||
@ -24,7 +28,8 @@ LLM API.
|
||||
## Introduction
|
||||
|
||||
🤖️ A Q&A application based on local knowledge base implemented using the idea
|
||||
of [langchain](https://github.com/hwchase17/langchain). The goal is to build a KBQA(Knowledge based Q&A) solution that
|
||||
of [langchain](https://github.com/langchain-ai/langchain). The goal is to build a KBQA(Knowledge based Q&A) solution
|
||||
that
|
||||
is friendly to Chinese scenarios and open source models and can run both offline and online.
|
||||
|
||||
💡 Inspired by [document.ai](https://github.com/GanymedeNil/document.ai)
|
||||
@ -55,10 +60,9 @@ The main process analysis from the aspect of document process:
|
||||
🚩 The training or fine-tuning are not involved in the project, but still, one always can improve performance by do
|
||||
these.
|
||||
|
||||
🌐 [AutoDL image](registry.cn-beijing.aliyuncs.com/chatchat/chatchat:0.2.5) is supported, and in v13 the codes are update
|
||||
to v0.2.9.
|
||||
🌐 [AutoDL image](https://www.codewithgpu.com/i/chatchat-space/Langchain-Chatchat/Langchain-Chatchat) is supported, and in v13 the codes are update to v0.2.9.
|
||||
|
||||
🐳 [Docker image](registry.cn-beijing.aliyuncs.com/chatchat/chatchat:0.2.7)
|
||||
🐳 [Docker image](registry.cn-beijing.aliyuncs.com/chatchat/chatchat:0.2.7) is supported to 0.2.7
|
||||
|
||||
## Pain Points Addressed
|
||||
|
||||
@ -98,7 +102,9 @@ $ pip install -r requirements_webui.txt
|
||||
|
||||
# 默认依赖包括基本运行环境(FAISS向量库)。如果要使用 milvus/pg_vector 等向量库,请将 requirements.txt 中相应依赖取消注释再安装。
|
||||
```
|
||||
Please note that the LangChain-Chachat `0.2.x` series is for the Langchain `0.0.x` series version. If you are using the Langchain `0.1.x` series version, you need to downgrade.
|
||||
|
||||
Please note that the LangChain-Chachat `0.2.x` series is for the Langchain `0.0.x` series version. If you are using the
|
||||
Langchain `0.1.x` series version, you need to downgrade.
|
||||
|
||||
### Model Download
|
||||
|
||||
@ -157,15 +163,23 @@ The above instructions are provided for a quick start. If you need more features
|
||||
please refer to the [Wiki](https://github.com/chatchat-space/Langchain-Chatchat/wiki/).
|
||||
|
||||
---
|
||||
|
||||
## Project Milestones
|
||||
|
||||
+ `April 2023`: `Langchain-ChatGLM 0.1.0` released, supporting local knowledge base question and answer based on the ChatGLM-6B model.
|
||||
+ `August 2023`: `Langchain-ChatGLM` was renamed to `Langchain-Chatchat`, `0.2.0` was released, using `fastchat` as the model loading solution, supporting more models and databases.
|
||||
+ `October 2023`: `Langchain-Chachat 0.2.5` was released, Agent content was launched, and the open source project won the third prize in the hackathon held by `Founder Park & Zhipu AI & Zilliz`.
|
||||
+ `April 2023`: `Langchain-ChatGLM 0.1.0` released, supporting local knowledge base question and answer based on the
|
||||
ChatGLM-6B model.
|
||||
+ `August 2023`: `Langchain-ChatGLM` was renamed to `Langchain-Chatchat`, `0.2.0` was released, using `fastchat` as the
|
||||
model loading solution, supporting more models and databases.
|
||||
+ `October 2023`: `Langchain-Chachat 0.2.5` was released, Agent content was launched, and the open source project won
|
||||
the third prize in the hackathon held by `Founder Park & Zhipu AI & Zilliz`.
|
||||
+ `December 2023`: `Langchain-Chachat` open source project received more than **20K** stars.
|
||||
+ `January 2024`: `LangChain 0.1.x` is launched, `Langchain-Chatchat 0.2.x` will stop updating and technical support, and all efforts will be made to develop `Langchain-Chatchat 0.3.x` with stronger applicability.
|
||||
+ `January 2024`: `LangChain 0.1.x` is launched, `Langchain-Chachat 0.2.x` is released. After the stable
|
||||
version `0.2.10` is released, updates and technical support will be stopped, and all efforts will be made to
|
||||
develop `Langchain with stronger applicability -Chat 0.3.x`.
|
||||
|
||||
|
||||
+ 🔥 Let’s look forward to the future Chatchat stories together···
|
||||
|
||||
---
|
||||
|
||||
## Contact Us
|
||||
@ -176,7 +190,7 @@ please refer to the [Wiki](https://github.com/chatchat-space/Langchain-Chatchat/
|
||||
|
||||
### WeChat Group
|
||||
|
||||
<img src="img/qr_code_85.jpg" alt="二维码" width="300" height="300" />
|
||||
<img src="img/qr_code_87.jpg" alt="二维码" width="300" height="300" />
|
||||
|
||||
### WeChat Official Account
|
||||
|
||||
|
||||
@ -120,7 +120,7 @@ ONLINE_LLM_MODEL = {
|
||||
"secret_key": "",
|
||||
"provider": "TianGongWorker",
|
||||
},
|
||||
# Gemini API (开发组未测试,由社群提供,只支持pro)
|
||||
# Gemini API https://makersuite.google.com/app/apikey
|
||||
"gemini-api": {
|
||||
"api_key": "",
|
||||
"provider": "GeminiWorker",
|
||||
|
||||
@ -92,11 +92,10 @@ FSCHAT_MODEL_WORKERS = {
|
||||
# 'disable_log_requests': False
|
||||
|
||||
},
|
||||
# 可以如下示例方式更改默认配置
|
||||
# "Qwen-1_8B-Chat": { # 使用default中的IP和端口
|
||||
# "device": "cpu",
|
||||
# },
|
||||
"chatglm3-6b": { # 使用default中的IP和端口
|
||||
"Qwen-1_8B-Chat": {
|
||||
"device": "cpu",
|
||||
},
|
||||
"chatglm3-6b": {
|
||||
"device": "cuda",
|
||||
},
|
||||
|
||||
@ -129,16 +128,10 @@ FSCHAT_MODEL_WORKERS = {
|
||||
"port": 21009,
|
||||
},
|
||||
"gemini-api": {
|
||||
"port": 21012,
|
||||
"port": 21010,
|
||||
},
|
||||
}
|
||||
|
||||
# fastchat multi model worker server
|
||||
FSCHAT_MULTI_MODEL_WORKERS = {
|
||||
# TODO:
|
||||
}
|
||||
|
||||
# fastchat controller server
|
||||
FSCHAT_CONTROLLER = {
|
||||
"host": DEFAULT_BIND_HOST,
|
||||
"port": 20001,
|
||||
|
||||
@ -16,11 +16,8 @@ class RapidOCRPDFLoader(UnstructuredFileLoader):
|
||||
|
||||
b_unit = tqdm.tqdm(total=doc.page_count, desc="RapidOCRPDFLoader context page index: 0")
|
||||
for i, page in enumerate(doc):
|
||||
# 更新描述
|
||||
b_unit.set_description("RapidOCRPDFLoader context page index: {}".format(i))
|
||||
# 立即显示进度条更新结果
|
||||
b_unit.refresh()
|
||||
# TODO: 依据文本与图片顺序调整处理方式
|
||||
text = page.get_text("")
|
||||
resp += text + "\n"
|
||||
|
||||
|
||||
Binary file not shown.
|
Before Width: | Height: | Size: 272 KiB |
BIN
img/qr_code_87.jpg
Normal file
BIN
img/qr_code_87.jpg
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 318 KiB |
@ -1,79 +1,61 @@
|
||||
# API requirements
|
||||
|
||||
torch~=2.1.2
|
||||
torchvision~=0.16.2
|
||||
torchaudio~=2.1.2
|
||||
xformers==0.0.23.post1
|
||||
transformers==4.36.2
|
||||
sentence_transformers==2.2.2
|
||||
|
||||
xformers~=0.0.23.post1
|
||||
transformers~=4.36.2
|
||||
sentence_transformers~=2.2.2
|
||||
langchain==0.0.354
|
||||
langchain-experimental==0.0.47
|
||||
pydantic==1.10.13
|
||||
fschat==0.2.35
|
||||
openai~=1.7.1
|
||||
fastapi~=0.108.0
|
||||
sse_starlette==1.8.2
|
||||
nltk>=3.8.1
|
||||
uvicorn>=0.24.0.post1
|
||||
fschat~=0.2.35
|
||||
openai~=1.9.0
|
||||
fastapi~=0.109.0
|
||||
sse_starlette~=1.8.2
|
||||
nltk~=3.8.1
|
||||
uvicorn~=0.24.0.post1
|
||||
starlette~=0.32.0
|
||||
unstructured[all-docs]==0.11.0
|
||||
python-magic-bin; sys_platform == 'win32'
|
||||
SQLAlchemy==2.0.19
|
||||
faiss-cpu~=1.7.4 # `conda install faiss-gpu -c conda-forge` if you want to accelerate with gpus
|
||||
unstructured[all-docs]~=0.12.0
|
||||
python-magic-bin; sys_platform ~= 'win32'
|
||||
SQLAlchemy~=2.0.25
|
||||
faiss-cpu~=1.7.4
|
||||
accelerate~=0.24.1
|
||||
spacy~=3.7.2
|
||||
PyMuPDF~=1.23.8
|
||||
rapidocr_onnxruntime==1.3.8
|
||||
PyMuPDF~=1.23.16
|
||||
rapidocr_onnxruntime~=1.3.8
|
||||
requests~=2.31.0
|
||||
pathlib~=1.0.1
|
||||
pytest~=7.4.3
|
||||
numexpr~=2.8.6 # max version for py38
|
||||
numexpr~=2.8.6
|
||||
strsimpy~=0.2.1
|
||||
markdownify~=0.11.6
|
||||
tiktoken~=0.5.2
|
||||
tqdm>=4.66.1
|
||||
websockets>=12.0
|
||||
tqdm~=4.66.1
|
||||
websockets~=12.0
|
||||
numpy~=1.24.4
|
||||
pandas~=2.0.3
|
||||
einops>=0.7.0
|
||||
transformers_stream_generator==0.0.4
|
||||
vllm==0.2.7; sys_platform == "linux"
|
||||
|
||||
# flash-attn>=2.4.3 # For Orion-14B-Chat and Qwen-14B-Chat
|
||||
|
||||
|
||||
# optional document loaders
|
||||
|
||||
#rapidocr_paddle[gpu]>=1.3.0.post5 # gpu accelleration for ocr of pdf and image files
|
||||
jq==1.6.0 # for .json and .jsonl files. suggest `conda install jq` on windows
|
||||
beautifulsoup4~=4.12.2 # for .mhtml files
|
||||
einops~=0.7.0
|
||||
transformers_stream_generator~=0.0.4
|
||||
vllm~=0.2.7; sys_platform ~= "linux"
|
||||
jq~=1.6.0
|
||||
beautifulsoup4~=4.12.2
|
||||
pysrt~=1.1.2
|
||||
|
||||
# Online api libs dependencies
|
||||
# zhipuAI sdk is not supported on our platform, so use http instead
|
||||
dashscope==1.13.6 # qwen
|
||||
# volcengine>=1.0.119 # fangzhou
|
||||
|
||||
dashscope~=1.13.6 # qwen
|
||||
# volcengine~=1.0.119 # fangzhou
|
||||
# uncomment libs if you want to use corresponding vector store
|
||||
# pymilvus>=2.3.4
|
||||
# psycopg2==2.9.9
|
||||
# pgvector>=0.2.4
|
||||
|
||||
# Agent and Search Tools
|
||||
|
||||
# pymilvus~=2.3.4
|
||||
# psycopg2~=2.9.9
|
||||
# pgvector~=0.2.4
|
||||
# flash-attn~=2.4.3 # For Orion-14B-Chat and Qwen-14B-Chat
|
||||
#rapidocr_paddle[gpu]~=1.3.0.post5 # gpu accelleration for ocr of pdf and image files
|
||||
arxiv~=2.1.0
|
||||
youtube-search~=2.1.2
|
||||
duckduckgo-search~=3.9.9
|
||||
metaphor-python~=0.1.23
|
||||
|
||||
# WebUI requirements
|
||||
|
||||
streamlit==1.30.0
|
||||
streamlit-option-menu==0.3.6
|
||||
streamlit-antd-components==0.3.1
|
||||
streamlit-chatbox==1.1.11
|
||||
streamlit-modal==0.1.0
|
||||
streamlit-aggrid==0.3.4.post3
|
||||
httpx==0.26.0
|
||||
watchdog==3.0.0
|
||||
streamlit~=1.30.0
|
||||
streamlit-option-menu~=0.3.12
|
||||
streamlit-antd-components~=0.3.1
|
||||
streamlit-chatbox~=1.1.11
|
||||
streamlit-modal~=0.1.0
|
||||
streamlit-aggrid~=0.3.4.post3
|
||||
httpx~=0.26.0
|
||||
watchdog~=3.0.0
|
||||
@ -1,15 +1,14 @@
|
||||
torch~=2.1.2
|
||||
torchvision~=0.16.2
|
||||
torchaudio~=2.1.2
|
||||
xformers==0.0.23.post1
|
||||
xformers>=0.0.23.post1
|
||||
transformers==4.36.2
|
||||
sentence_transformers==2.2.2
|
||||
|
||||
langchain==0.0.354
|
||||
langchain-experimental==0.0.47
|
||||
pydantic==1.10.13
|
||||
fschat==0.2.35
|
||||
openai~=1.7.1
|
||||
openai~=1.9.0
|
||||
fastapi~=0.108.0
|
||||
sse_starlette==1.8.2
|
||||
nltk>=3.8.1
|
||||
@ -18,7 +17,7 @@ starlette~=0.32.0
|
||||
unstructured[all-docs]==0.11.0
|
||||
python-magic-bin; sys_platform == 'win32'
|
||||
SQLAlchemy==2.0.19
|
||||
faiss-cpu~=1.7.4 # `conda install faiss-gpu -c conda-forge` if you want to accelerate with gpus
|
||||
faiss-cpu~=1.7.4
|
||||
accelerate~=0.24.1
|
||||
spacy~=3.7.2
|
||||
PyMuPDF~=1.23.8
|
||||
@ -26,7 +25,7 @@ rapidocr_onnxruntime==1.3.8
|
||||
requests~=2.31.0
|
||||
pathlib~=1.0.1
|
||||
pytest~=7.4.3
|
||||
numexpr~=2.8.6 # max version for py38
|
||||
numexpr~=2.8.6
|
||||
strsimpy~=0.2.1
|
||||
markdownify~=0.11.6
|
||||
tiktoken~=0.5.2
|
||||
@ -39,29 +38,18 @@ transformers_stream_generator==0.0.4
|
||||
vllm==0.2.7; sys_platform == "linux"
|
||||
httpx==0.26.0
|
||||
llama-index
|
||||
# flash-attn>=2.4.3 # For Orion-14B-Chat and Qwen-14B-Chat
|
||||
|
||||
# optional document loaders
|
||||
|
||||
# rapidocr_paddle[gpu]>=1.3.0.post5 # gpu accelleration for ocr of pdf and image files
|
||||
jq==1.6.0 # for .json and .jsonl files. suggest `conda install jq` on windows
|
||||
beautifulsoup4~=4.12.2 # for .mhtml files
|
||||
jq==1.6.0
|
||||
beautifulsoup4~=4.12.2
|
||||
pysrt~=1.1.2
|
||||
|
||||
# Online api libs dependencies
|
||||
|
||||
# zhipuAI sdk is not supported on our platform, so use http instead
|
||||
dashscope==1.13.6 # qwen
|
||||
# volcengine>=1.0.119 # fangzhou
|
||||
|
||||
# uncomment libs if you want to use corresponding vector store
|
||||
# pymilvus>=2.3.4
|
||||
# psycopg2==2.9.9
|
||||
# pgvector>=0.2.4
|
||||
|
||||
# Agent and Search Tools
|
||||
|
||||
dashscope==1.13.6
|
||||
arxiv~=2.1.0
|
||||
youtube-search~=2.1.2
|
||||
duckduckgo-search~=3.9.9
|
||||
metaphor-python~=0.1.23
|
||||
metaphor-python~=0.1.23
|
||||
|
||||
# volcengine>=1.0.119
|
||||
# pymilvus>=2.3.4
|
||||
# psycopg2==2.9.9
|
||||
# pgvector>=0.2.4
|
||||
# flash-attn>=2.4.3 # For Orion-14B-Chat and Qwen-14B-Chat
|
||||
# rapidocr_paddle[gpu]>=1.3.0.post5
|
||||
@ -1,64 +1,32 @@
|
||||
# API requirements
|
||||
|
||||
langchain==0.0.354
|
||||
langchain-experimental==0.0.47
|
||||
pydantic==1.10.13
|
||||
fschat==0.2.35
|
||||
openai~=1.7.1
|
||||
fastapi~=0.108.0
|
||||
sse_starlette==1.8.2
|
||||
nltk>=3.8.1
|
||||
uvicorn>=0.24.0.post1
|
||||
fschat~=0.2.35
|
||||
openai~=1.9.0
|
||||
fastapi~=0.109.0
|
||||
sse_starlette~=1.8.2
|
||||
nltk~=3.8.1
|
||||
uvicorn~=0.24.0.post1
|
||||
starlette~=0.32.0
|
||||
unstructured[all-docs]==0.11.0
|
||||
python-magic-bin; sys_platform == 'win32'
|
||||
SQLAlchemy==2.0.19
|
||||
unstructured[all-docs]~=0.12.0
|
||||
python-magic-bin; sys_platform ~= 'win32'
|
||||
SQLAlchemy~=2.0.25
|
||||
faiss-cpu~=1.7.4
|
||||
accelerate~=0.24.1
|
||||
spacy~=3.7.2
|
||||
PyMuPDF~=1.23.16
|
||||
rapidocr_onnxruntime~=1.3.8
|
||||
requests~=2.31.0
|
||||
pathlib~=1.0.1
|
||||
pytest~=7.4.3
|
||||
numexpr~=2.8.6 # max version for py38
|
||||
strsimpy~=0.2.1
|
||||
markdownify~=0.11.6
|
||||
tiktoken~=0.5.2
|
||||
tqdm>=4.66.1
|
||||
websockets>=12.0
|
||||
numpy~=1.24.4
|
||||
pandas~=2.0.3
|
||||
einops>=0.7.0
|
||||
transformers_stream_generator==0.0.4
|
||||
vllm==0.2.7; sys_platform == "linux"
|
||||
httpx[brotli,http2,socks]==0.25.2
|
||||
requests
|
||||
pathlib
|
||||
pytest
|
||||
|
||||
|
||||
# Online api libs dependencies
|
||||
|
||||
# zhipuAI sdk is not supported on our platform, so use http instead
|
||||
dashscope==1.13.6
|
||||
# volcengine>=1.0.119
|
||||
|
||||
# uncomment libs if you want to use corresponding vector store
|
||||
# pymilvus>=2.3.4
|
||||
# psycopg2==2.9.9
|
||||
# pgvector>=0.2.4
|
||||
|
||||
# Agent and Search Tools
|
||||
|
||||
arxiv~=2.1.0
|
||||
youtube-search~=2.1.2
|
||||
duckduckgo-search~=3.9.9
|
||||
metaphor-python~=0.1.23
|
||||
|
||||
# WebUI requirements
|
||||
|
||||
streamlit==1.30.0
|
||||
streamlit-option-menu==0.3.6
|
||||
streamlit-antd-components==0.3.1
|
||||
streamlit-chatbox==1.1.11
|
||||
streamlit-modal==0.1.0
|
||||
streamlit-aggrid==0.3.4.post3
|
||||
httpx==0.26.0
|
||||
watchdog==3.0.0
|
||||
watchdog~=3.0.0
|
||||
# volcengine>=1.0.119
|
||||
# pymilvus>=2.3.4
|
||||
# psycopg2==2.9.9
|
||||
# pgvector>=0.2.4
|
||||
# flash-attn>=2.4.3 # For Orion-14B-Chat and Qwen-14B-Chat
|
||||
@ -1,10 +1,8 @@
|
||||
# WebUI requirements
|
||||
|
||||
streamlit==1.30.0
|
||||
streamlit-option-menu==0.3.6
|
||||
streamlit-antd-components==0.3.1
|
||||
streamlit-chatbox==1.1.11
|
||||
streamlit-modal==0.1.0
|
||||
streamlit-aggrid==0.3.4.post3
|
||||
httpx==0.26.0
|
||||
watchdog==3.0.0
|
||||
streamlit~=1.30.0
|
||||
streamlit-option-menu~=0.3.12
|
||||
streamlit-antd-components~=0.3.1
|
||||
streamlit-chatbox~=1.1.11
|
||||
streamlit-modal~=0.1.0
|
||||
streamlit-aggrid~=0.3.4.post3
|
||||
httpx~=0.26.0
|
||||
watchdog~=3.0.0
|
||||
@ -16,7 +16,6 @@ def embed_texts(
|
||||
) -> BaseResponse:
|
||||
'''
|
||||
对文本进行向量化。返回数据格式:BaseResponse(data=List[List[float]])
|
||||
TODO: 也许需要加入缓存机制,减少 token 消耗
|
||||
'''
|
||||
try:
|
||||
if embed_model in list_embed_models(): # 使用本地Embeddings模型
|
||||
|
||||
@ -13,9 +13,9 @@ def list_kbs():
|
||||
|
||||
|
||||
def create_kb(knowledge_base_name: str = Body(..., examples=["samples"]),
|
||||
vector_store_type: str = Body("faiss"),
|
||||
embed_model: str = Body(EMBEDDING_MODEL),
|
||||
) -> BaseResponse:
|
||||
vector_store_type: str = Body("faiss"),
|
||||
embed_model: str = Body(EMBEDDING_MODEL),
|
||||
) -> BaseResponse:
|
||||
# Create selected knowledge base
|
||||
if not validate_kb_name(knowledge_base_name):
|
||||
return BaseResponse(code=403, msg="Don't attack me")
|
||||
@ -39,8 +39,8 @@ def create_kb(knowledge_base_name: str = Body(..., examples=["samples"]),
|
||||
|
||||
|
||||
def delete_kb(
|
||||
knowledge_base_name: str = Body(..., examples=["samples"])
|
||||
) -> BaseResponse:
|
||||
knowledge_base_name: str = Body(..., examples=["samples"])
|
||||
) -> BaseResponse:
|
||||
# Delete selected knowledge base
|
||||
if not validate_kb_name(knowledge_base_name):
|
||||
return BaseResponse(code=403, msg="Don't attack me")
|
||||
|
||||
@ -55,8 +55,6 @@ class _FaissPool(CachePool):
|
||||
embed_model: str = EMBEDDING_MODEL,
|
||||
embed_device: str = embedding_device(),
|
||||
) -> FAISS:
|
||||
# TODO: 整个Embeddings加载逻辑有些混乱,待清理
|
||||
# create an empty vector store
|
||||
embeddings = EmbeddingsFunAdapter(embed_model)
|
||||
doc = Document(page_content="init", metadata={})
|
||||
vector_store = FAISS.from_documents([doc], embeddings, normalize_L2=True,distance_strategy="METRIC_INNER_PRODUCT")
|
||||
|
||||
@ -95,7 +95,6 @@ def _save_files_in_thread(files: List[UploadFile],
|
||||
and not override
|
||||
and os.path.getsize(file_path) == len(file_content)
|
||||
):
|
||||
# TODO: filesize 不同后的处理
|
||||
file_status = f"文件 {filename} 已存在。"
|
||||
logger.warn(file_status)
|
||||
return dict(code=404, msg=file_status, data=data)
|
||||
@ -116,7 +115,6 @@ def _save_files_in_thread(files: List[UploadFile],
|
||||
yield result
|
||||
|
||||
|
||||
# TODO: 等langchain.document_loaders支持内存文件的时候再开通
|
||||
# def files2docs(files: List[UploadFile] = File(..., description="上传文件,支持多文件"),
|
||||
# knowledge_base_name: str = Form(..., description="知识库名称", examples=["samples"]),
|
||||
# override: bool = Form(False, description="覆盖已有文件"),
|
||||
|
||||
@ -191,7 +191,6 @@ class KBService(ABC):
|
||||
'''
|
||||
传入参数为: {doc_id: Document, ...}
|
||||
如果对应 doc_id 的值为 None,或其 page_content 为空,则删除该文档
|
||||
TODO:是否要支持新增 docs ?
|
||||
'''
|
||||
self.del_doc_by_ids(list(docs.keys()))
|
||||
docs = []
|
||||
|
||||
@ -70,7 +70,6 @@ class MilvusKBService(KBService):
|
||||
return score_threshold_process(score_threshold, top_k, docs)
|
||||
|
||||
def do_add_doc(self, docs: List[Document], **kwargs) -> List[Dict]:
|
||||
# TODO: workaround for bug #10492 in langchain
|
||||
for doc in docs:
|
||||
for k, v in doc.metadata.items():
|
||||
doc.metadata[k] = str(v)
|
||||
|
||||
@ -32,8 +32,6 @@ class PGKBService(KBService):
|
||||
results = [Document(page_content=row[0], metadata=row[1]) for row in
|
||||
session.execute(stmt, {'ids': ids}).fetchall()]
|
||||
return results
|
||||
|
||||
# TODO:
|
||||
def del_doc_by_ids(self, ids: List[str]) -> bool:
|
||||
return super().del_doc_by_ids(ids)
|
||||
|
||||
|
||||
@ -13,7 +13,6 @@ from server.db.repository.knowledge_metadata_repository import add_summary_to_db
|
||||
from langchain.docstore.document import Document
|
||||
|
||||
|
||||
# TODO 暂不考虑文件更新,需要重新删除相关文档,再重新添加
|
||||
class KBSummaryService(ABC):
|
||||
kb_name: str
|
||||
embed_model: str
|
||||
|
||||
@ -112,12 +112,6 @@ class SummaryAdapter:
|
||||
docs: List[DocumentWithVSId] = []) -> List[Document]:
|
||||
|
||||
logger.info("start summary")
|
||||
# TODO 暂不处理文档中涉及语义重复、上下文缺失、document was longer than the context length 的问题
|
||||
# merge_docs = self._drop_overlap(docs)
|
||||
# # 将merge_docs中的句子合并成一个文档
|
||||
# text = self._join_docs(merge_docs)
|
||||
# 根据段落于句子的分隔符,将文档分成chunk,每个chunk长度小于token_max长度
|
||||
|
||||
"""
|
||||
这个过程分成两个部分:
|
||||
1. 对每个文档进行处理,得到每个文档的摘要
|
||||
|
||||
@ -174,7 +174,6 @@ def get_loader(loader_name: str, file_path: str, loader_kwargs: Dict = None):
|
||||
if encode_detect is None:
|
||||
encode_detect = {"encoding": "utf-8"}
|
||||
loader_kwargs["encoding"] = encode_detect["encoding"]
|
||||
## TODO:支持更多的自定义CSV读取逻辑
|
||||
|
||||
elif loader_name == "JSONLoader":
|
||||
loader_kwargs.setdefault("jq_schema", ".")
|
||||
|
||||
@ -67,12 +67,10 @@ class AzureWorker(ApiModelWorker):
|
||||
self.logger.error(f"请求 Azure API 时发生错误:{resp}")
|
||||
|
||||
def get_embeddings(self, params):
|
||||
# TODO: 支持embeddings
|
||||
print("embedding")
|
||||
print(params)
|
||||
|
||||
def make_conv_template(self, conv_template: str = None, model_path: str = None) -> Conversation:
|
||||
# TODO: 确认模板是否需要修改
|
||||
return conv.Conversation(
|
||||
name=self.model_names[0],
|
||||
system_message="You are a helpful, respectful and honest assistant.",
|
||||
|
||||
@ -88,12 +88,10 @@ class BaiChuanWorker(ApiModelWorker):
|
||||
yield data
|
||||
|
||||
def get_embeddings(self, params):
|
||||
# TODO: 支持embeddings
|
||||
print("embedding")
|
||||
print(params)
|
||||
|
||||
def make_conv_template(self, conv_template: str = None, model_path: str = None) -> Conversation:
|
||||
# TODO: 确认模板是否需要修改
|
||||
return conv.Conversation(
|
||||
name=self.model_names[0],
|
||||
system_message="",
|
||||
|
||||
@ -125,8 +125,6 @@ class ApiModelWorker(BaseModelWorker):
|
||||
|
||||
|
||||
def count_token(self, params):
|
||||
# TODO:需要完善
|
||||
# print("count token")
|
||||
prompt = params["prompt"]
|
||||
return {"count": len(str(prompt)), "error_code": 0}
|
||||
|
||||
|
||||
@ -12,16 +12,16 @@ class FangZhouWorker(ApiModelWorker):
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
model_names: List[str] = ["fangzhou-api"],
|
||||
controller_addr: str = None,
|
||||
worker_addr: str = None,
|
||||
version: Literal["chatglm-6b-model"] = "chatglm-6b-model",
|
||||
**kwargs,
|
||||
self,
|
||||
*,
|
||||
model_names: List[str] = ["fangzhou-api"],
|
||||
controller_addr: str = None,
|
||||
worker_addr: str = None,
|
||||
version: Literal["chatglm-6b-model"] = "chatglm-6b-model",
|
||||
**kwargs,
|
||||
):
|
||||
kwargs.update(model_names=model_names, controller_addr=controller_addr, worker_addr=worker_addr)
|
||||
kwargs.setdefault("context_len", 16384) # TODO: 不同的模型有不同的大小
|
||||
kwargs.setdefault("context_len", 16384)
|
||||
super().__init__(**kwargs)
|
||||
self.version = version
|
||||
|
||||
@ -53,15 +53,15 @@ class FangZhouWorker(ApiModelWorker):
|
||||
if error := resp.error:
|
||||
if error.code_n > 0:
|
||||
data = {
|
||||
"error_code": error.code_n,
|
||||
"text": error.message,
|
||||
"error": {
|
||||
"message": error.message,
|
||||
"type": "invalid_request_error",
|
||||
"param": None,
|
||||
"code": None,
|
||||
}
|
||||
"error_code": error.code_n,
|
||||
"text": error.message,
|
||||
"error": {
|
||||
"message": error.message,
|
||||
"type": "invalid_request_error",
|
||||
"param": None,
|
||||
"code": None,
|
||||
}
|
||||
}
|
||||
self.logger.error(f"请求方舟 API 时发生错误:{data}")
|
||||
yield data
|
||||
elif chunk := resp.choice.message.content:
|
||||
@ -77,7 +77,6 @@ class FangZhouWorker(ApiModelWorker):
|
||||
break
|
||||
|
||||
def get_embeddings(self, params):
|
||||
# TODO: 支持embeddings
|
||||
print("embedding")
|
||||
print(params)
|
||||
|
||||
|
||||
@ -3,7 +3,7 @@ from fastchat.conversation import Conversation
|
||||
from server.model_workers.base import *
|
||||
from server.utils import get_httpx_client
|
||||
from fastchat import conversation as conv
|
||||
import json,httpx
|
||||
import json, httpx
|
||||
from typing import List, Dict
|
||||
from configs import logger, log_verbose
|
||||
|
||||
@ -14,14 +14,14 @@ class GeminiWorker(ApiModelWorker):
|
||||
*,
|
||||
controller_addr: str = None,
|
||||
worker_addr: str = None,
|
||||
model_names: List[str] = ["Gemini-api"],
|
||||
model_names: List[str] = ["gemini-api"],
|
||||
**kwargs,
|
||||
):
|
||||
kwargs.update(model_names=model_names, controller_addr=controller_addr, worker_addr=worker_addr)
|
||||
kwargs.setdefault("context_len", 4096)
|
||||
super().__init__(**kwargs)
|
||||
|
||||
def create_gemini_messages(self,messages) -> json:
|
||||
def create_gemini_messages(self, messages) -> json:
|
||||
has_history = any(msg['role'] == 'assistant' for msg in messages)
|
||||
gemini_msg = []
|
||||
|
||||
@ -42,11 +42,11 @@ class GeminiWorker(ApiModelWorker):
|
||||
|
||||
msg = dict(contents=gemini_msg)
|
||||
return msg
|
||||
|
||||
|
||||
def do_chat(self, params: ApiChatParams) -> Dict:
|
||||
params.load_config(self.model_names[0])
|
||||
data = self.create_gemini_messages(messages=params.messages)
|
||||
generationConfig=dict(
|
||||
generationConfig = dict(
|
||||
temperature=params.temperature,
|
||||
topK=1,
|
||||
topP=1,
|
||||
@ -54,8 +54,8 @@ class GeminiWorker(ApiModelWorker):
|
||||
stopSequences=[]
|
||||
)
|
||||
|
||||
data['generationConfig'] = generationConfig
|
||||
url = "https://generativelanguage.googleapis.com/v1beta/models/gemini-pro:generateContent"+ '?key=' + params.api_key
|
||||
data['generationConfig'] = generationConfig
|
||||
url = "https://generativelanguage.googleapis.com/v1beta/models/gemini-pro:generateContent" + '?key=' + params.api_key
|
||||
headers = {
|
||||
'Content-Type': 'application/json',
|
||||
}
|
||||
@ -67,7 +67,7 @@ class GeminiWorker(ApiModelWorker):
|
||||
text = ""
|
||||
json_string = ""
|
||||
timeout = httpx.Timeout(60.0)
|
||||
client=get_httpx_client(timeout=timeout)
|
||||
client = get_httpx_client(timeout=timeout)
|
||||
with client.stream("POST", url, headers=headers, json=data) as response:
|
||||
for line in response.iter_lines():
|
||||
line = line.strip()
|
||||
@ -89,13 +89,12 @@ class GeminiWorker(ApiModelWorker):
|
||||
"error_code": 0,
|
||||
"text": text
|
||||
}
|
||||
print(text)
|
||||
print(text)
|
||||
except json.JSONDecodeError as e:
|
||||
print("Failed to decode JSON:", e)
|
||||
print("Invalid JSON string:", json_string)
|
||||
|
||||
def get_embeddings(self, params):
|
||||
# TODO: 支持embeddings
|
||||
print("embedding")
|
||||
print(params)
|
||||
|
||||
|
||||
@ -37,7 +37,6 @@ class MiniMaxWorker(ApiModelWorker):
|
||||
|
||||
def do_chat(self, params: ApiChatParams) -> Dict:
|
||||
# 按照官网推荐,直接调用abab 5.5模型
|
||||
# TODO: 支持指定回复要求,支持指定用户名称、AI名称
|
||||
params.load_config(self.model_names[0])
|
||||
|
||||
url = 'https://api.minimax.chat/v1/text/chatcompletion{pro}?GroupId={group_id}'
|
||||
@ -55,7 +54,7 @@ class MiniMaxWorker(ApiModelWorker):
|
||||
"temperature": params.temperature,
|
||||
"top_p": params.top_p,
|
||||
"tokens_to_generate": params.max_tokens or 1024,
|
||||
# TODO: 以下参数为minimax特有,传入空值会出错。
|
||||
# 以下参数为minimax特有,传入空值会出错。
|
||||
# "prompt": params.system_message or self.conv.system_message,
|
||||
# "bot_setting": [],
|
||||
# "role_meta": params.role_meta,
|
||||
@ -143,12 +142,10 @@ class MiniMaxWorker(ApiModelWorker):
|
||||
return {"code": 200, "data": result}
|
||||
|
||||
def get_embeddings(self, params):
|
||||
# TODO: 支持embeddings
|
||||
print("embedding")
|
||||
print(params)
|
||||
|
||||
def make_conv_template(self, conv_template: str = None, model_path: str = None) -> Conversation:
|
||||
# TODO: 确认模板是否需要修改
|
||||
return conv.Conversation(
|
||||
name=self.model_names[0],
|
||||
system_message="你是MiniMax自主研发的大型语言模型,回答问题简洁有条理。",
|
||||
|
||||
@ -187,14 +187,11 @@ class QianFanWorker(ApiModelWorker):
|
||||
i += batch_size
|
||||
return {"code": 200, "data": result}
|
||||
|
||||
# TODO: qianfan支持续写模型
|
||||
def get_embeddings(self, params):
|
||||
# TODO: 支持embeddings
|
||||
print("embedding")
|
||||
print(params)
|
||||
|
||||
def make_conv_template(self, conv_template: str = None, model_path: str = None) -> Conversation:
|
||||
# TODO: 确认模板是否需要修改
|
||||
return conv.Conversation(
|
||||
name=self.model_names[0],
|
||||
system_message="你是一个聪明的助手,请根据用户的提示来完成任务",
|
||||
|
||||
@ -100,12 +100,10 @@ class QwenWorker(ApiModelWorker):
|
||||
return {"code": 200, "data": result}
|
||||
|
||||
def get_embeddings(self, params):
|
||||
# TODO: 支持embeddings
|
||||
print("embedding")
|
||||
print(params)
|
||||
|
||||
def make_conv_template(self, conv_template: str = None, model_path: str = None) -> Conversation:
|
||||
# TODO: 确认模板是否需要修改
|
||||
return conv.Conversation(
|
||||
name=self.model_names[0],
|
||||
system_message="你是一个聪明、对人类有帮助的人工智能,你可以对人类提出的问题给出有用、详细、礼貌的回答。",
|
||||
|
||||
@ -70,12 +70,10 @@ class TianGongWorker(ApiModelWorker):
|
||||
yield data
|
||||
|
||||
def get_embeddings(self, params):
|
||||
# TODO: 支持embeddings
|
||||
print("embedding")
|
||||
print(params)
|
||||
|
||||
def make_conv_template(self, conv_template: str = None, model_path: str = None) -> Conversation:
|
||||
# TODO: 确认模板是否需要修改
|
||||
return conv.Conversation(
|
||||
name=self.model_names[0],
|
||||
system_message="",
|
||||
|
||||
@ -42,7 +42,6 @@ class XingHuoWorker(ApiModelWorker):
|
||||
self.version = version
|
||||
|
||||
def do_chat(self, params: ApiChatParams) -> Dict:
|
||||
# TODO: 当前每次对话都要重新连接websocket,确认是否可以保持连接
|
||||
params.load_config(self.model_names[0])
|
||||
|
||||
version_mapping = {
|
||||
@ -73,12 +72,10 @@ class XingHuoWorker(ApiModelWorker):
|
||||
yield {"error_code": 0, "text": text}
|
||||
|
||||
def get_embeddings(self, params):
|
||||
# TODO: 支持embeddings
|
||||
print("embedding")
|
||||
print(params)
|
||||
|
||||
def make_conv_template(self, conv_template: str = None, model_path: str = None) -> Conversation:
|
||||
# TODO: 确认模板是否需要修改
|
||||
return conv.Conversation(
|
||||
name=self.model_names[0],
|
||||
system_message="你是一个聪明的助手,请根据用户的提示来完成任务",
|
||||
|
||||
@ -36,7 +36,6 @@ async def wrap_done(fn: Awaitable, event: asyncio.Event):
|
||||
await fn
|
||||
except Exception as e:
|
||||
logging.exception(e)
|
||||
# TODO: handle exception
|
||||
msg = f"Caught exception: {e}"
|
||||
logger.error(f'{e.__class__.__name__}: {msg}',
|
||||
exc_info=e if log_verbose else None)
|
||||
@ -404,7 +403,7 @@ def fschat_controller_address() -> str:
|
||||
|
||||
|
||||
def fschat_model_worker_address(model_name: str = LLM_MODELS[0]) -> str:
|
||||
if model := get_model_worker_config(model_name): # TODO: depends fastchat
|
||||
if model := get_model_worker_config(model_name):
|
||||
host = model["host"]
|
||||
if host == "0.0.0.0":
|
||||
host = "127.0.0.1"
|
||||
@ -449,7 +448,7 @@ def get_prompt_template(type: str, name: str) -> Optional[str]:
|
||||
|
||||
from configs import prompt_config
|
||||
import importlib
|
||||
importlib.reload(prompt_config) # TODO: 检查configs/prompt_config.py文件有修改再重新加载
|
||||
importlib.reload(prompt_config)
|
||||
return prompt_config.PROMPT_TEMPLATES[type].get(name)
|
||||
|
||||
|
||||
@ -550,7 +549,7 @@ def run_in_thread_pool(
|
||||
thread = pool.submit(func, **kwargs)
|
||||
tasks.append(thread)
|
||||
|
||||
for obj in as_completed(tasks): # TODO: Ctrl+c无法停止
|
||||
for obj in as_completed(tasks):
|
||||
yield obj.result()
|
||||
|
||||
|
||||
|
||||
@ -418,7 +418,7 @@ def run_openai_api(log_level: str = "INFO", started_event: mp.Event = None):
|
||||
set_httpx_config()
|
||||
|
||||
controller_addr = fschat_controller_address()
|
||||
app = create_openai_api_app(controller_addr, log_level=log_level) # TODO: not support keys yet.
|
||||
app = create_openai_api_app(controller_addr, log_level=log_level)
|
||||
_set_app_event(app, started_event)
|
||||
|
||||
host = FSCHAT_OPENAI_API["host"]
|
||||
|
||||
@ -12,7 +12,6 @@ from server.knowledge_base.utils import LOADER_DICT
|
||||
import uuid
|
||||
from typing import List, Dict
|
||||
|
||||
|
||||
chat_box = ChatBox(
|
||||
assistant_avatar=os.path.join(
|
||||
"img",
|
||||
@ -127,7 +126,6 @@ def dialogue_page(api: ApiRequest, is_lite: bool = False):
|
||||
chat_box.use_chat_name(conversation_name)
|
||||
conversation_id = st.session_state["conversation_ids"][conversation_name]
|
||||
|
||||
# TODO: 对话模型与会话绑定
|
||||
def on_mode_change():
|
||||
mode = st.session_state.dialogue_mode
|
||||
text = f"已切换到 {mode} 模式。"
|
||||
@ -138,11 +136,11 @@ def dialogue_page(api: ApiRequest, is_lite: bool = False):
|
||||
st.toast(text)
|
||||
|
||||
dialogue_modes = ["LLM 对话",
|
||||
"知识库问答",
|
||||
"文件对话",
|
||||
"搜索引擎问答",
|
||||
"自定义Agent问答",
|
||||
]
|
||||
"知识库问答",
|
||||
"文件对话",
|
||||
"搜索引擎问答",
|
||||
"自定义Agent问答",
|
||||
]
|
||||
dialogue_mode = st.selectbox("请选择对话模式:",
|
||||
dialogue_modes,
|
||||
index=0,
|
||||
@ -166,9 +164,9 @@ def dialogue_page(api: ApiRequest, is_lite: bool = False):
|
||||
available_models = []
|
||||
config_models = api.list_config_models()
|
||||
if not is_lite:
|
||||
for k, v in config_models.get("local", {}).items(): # 列出配置了有效本地路径的模型
|
||||
for k, v in config_models.get("local", {}).items(): # 列出配置了有效本地路径的模型
|
||||
if (v.get("model_path_exists")
|
||||
and k not in running_models):
|
||||
and k not in running_models):
|
||||
available_models.append(k)
|
||||
for k, v in config_models.get("online", {}).items(): # 列出ONLINE_MODELS中直接访问的模型
|
||||
if not v.get("provider") and k not in running_models:
|
||||
@ -250,14 +248,14 @@ def dialogue_page(api: ApiRequest, is_lite: bool = False):
|
||||
elif dialogue_mode == "文件对话":
|
||||
with st.expander("文件对话配置", True):
|
||||
files = st.file_uploader("上传知识文件:",
|
||||
[i for ls in LOADER_DICT.values() for i in ls],
|
||||
accept_multiple_files=True,
|
||||
)
|
||||
[i for ls in LOADER_DICT.values() for i in ls],
|
||||
accept_multiple_files=True,
|
||||
)
|
||||
kb_top_k = st.number_input("匹配知识条数:", 1, 20, VECTOR_SEARCH_TOP_K)
|
||||
|
||||
## Bge 模型会超过1
|
||||
score_threshold = st.slider("知识匹配分数阈值:", 0.0, 2.0, float(SCORE_THRESHOLD), 0.01)
|
||||
if st.button("开始上传", disabled=len(files)==0):
|
||||
if st.button("开始上传", disabled=len(files) == 0):
|
||||
st.session_state["file_chat_id"] = upload_temp_docs(files, api)
|
||||
elif dialogue_mode == "搜索引擎问答":
|
||||
search_engine_list = api.list_search_engines()
|
||||
@ -279,9 +277,9 @@ def dialogue_page(api: ApiRequest, is_lite: bool = False):
|
||||
chat_input_placeholder = "请输入对话内容,换行请使用Shift+Enter。输入/help查看自定义命令 "
|
||||
|
||||
def on_feedback(
|
||||
feedback,
|
||||
message_id: str = "",
|
||||
history_index: int = -1,
|
||||
feedback,
|
||||
message_id: str = "",
|
||||
history_index: int = -1,
|
||||
):
|
||||
reason = feedback["text"]
|
||||
score_int = chat_box.set_feedback(feedback=feedback, history_index=history_index)
|
||||
@ -296,7 +294,7 @@ def dialogue_page(api: ApiRequest, is_lite: bool = False):
|
||||
}
|
||||
|
||||
if prompt := st.chat_input(chat_input_placeholder, key="prompt"):
|
||||
if parse_command(text=prompt, modal=modal): # 用户输入自定义命令
|
||||
if parse_command(text=prompt, modal=modal): # 用户输入自定义命令
|
||||
st.rerun()
|
||||
else:
|
||||
history = get_messages_history(history_len)
|
||||
@ -306,11 +304,11 @@ def dialogue_page(api: ApiRequest, is_lite: bool = False):
|
||||
text = ""
|
||||
message_id = ""
|
||||
r = api.chat_chat(prompt,
|
||||
history=history,
|
||||
conversation_id=conversation_id,
|
||||
model=llm_model,
|
||||
prompt_name=prompt_template_name,
|
||||
temperature=temperature)
|
||||
history=history,
|
||||
conversation_id=conversation_id,
|
||||
model=llm_model,
|
||||
prompt_name=prompt_template_name,
|
||||
temperature=temperature)
|
||||
for t in r:
|
||||
if error_msg := check_error_msg(t): # check whether error occured
|
||||
st.error(error_msg)
|
||||
@ -321,12 +319,12 @@ def dialogue_page(api: ApiRequest, is_lite: bool = False):
|
||||
|
||||
metadata = {
|
||||
"message_id": message_id,
|
||||
}
|
||||
}
|
||||
chat_box.update_msg(text, streaming=False, metadata=metadata) # 更新最终的字符串,去除光标
|
||||
chat_box.show_feedback(**feedback_kwargs,
|
||||
key=message_id,
|
||||
on_submit=on_feedback,
|
||||
kwargs={"message_id": message_id, "history_index": len(chat_box.history) - 1})
|
||||
key=message_id,
|
||||
on_submit=on_feedback,
|
||||
kwargs={"message_id": message_id, "history_index": len(chat_box.history) - 1})
|
||||
|
||||
elif dialogue_mode == "自定义Agent问答":
|
||||
if not any(agent in llm_model for agent in SUPPORT_AGENT_MODEL):
|
||||
@ -373,13 +371,13 @@ def dialogue_page(api: ApiRequest, is_lite: bool = False):
|
||||
])
|
||||
text = ""
|
||||
for d in api.knowledge_base_chat(prompt,
|
||||
knowledge_base_name=selected_kb,
|
||||
top_k=kb_top_k,
|
||||
score_threshold=score_threshold,
|
||||
history=history,
|
||||
model=llm_model,
|
||||
prompt_name=prompt_template_name,
|
||||
temperature=temperature):
|
||||
knowledge_base_name=selected_kb,
|
||||
top_k=kb_top_k,
|
||||
score_threshold=score_threshold,
|
||||
history=history,
|
||||
model=llm_model,
|
||||
prompt_name=prompt_template_name,
|
||||
temperature=temperature):
|
||||
if error_msg := check_error_msg(d): # check whether error occured
|
||||
st.error(error_msg)
|
||||
elif chunk := d.get("answer"):
|
||||
@ -397,13 +395,13 @@ def dialogue_page(api: ApiRequest, is_lite: bool = False):
|
||||
])
|
||||
text = ""
|
||||
for d in api.file_chat(prompt,
|
||||
knowledge_id=st.session_state["file_chat_id"],
|
||||
top_k=kb_top_k,
|
||||
score_threshold=score_threshold,
|
||||
history=history,
|
||||
model=llm_model,
|
||||
prompt_name=prompt_template_name,
|
||||
temperature=temperature):
|
||||
knowledge_id=st.session_state["file_chat_id"],
|
||||
top_k=kb_top_k,
|
||||
score_threshold=score_threshold,
|
||||
history=history,
|
||||
model=llm_model,
|
||||
prompt_name=prompt_template_name,
|
||||
temperature=temperature):
|
||||
if error_msg := check_error_msg(d): # check whether error occured
|
||||
st.error(error_msg)
|
||||
elif chunk := d.get("answer"):
|
||||
@ -455,4 +453,4 @@ def dialogue_page(api: ApiRequest, is_lite: bool = False):
|
||||
file_name=f"{now:%Y-%m-%d %H.%M}_对话记录.md",
|
||||
mime="text/markdown",
|
||||
use_container_width=True,
|
||||
)
|
||||
)
|
||||
|
||||
@ -7,15 +7,12 @@ from server.knowledge_base.utils import get_file_path, LOADER_DICT
|
||||
from server.knowledge_base.kb_service.base import get_kb_details, get_kb_file_details
|
||||
from typing import Literal, Dict, Tuple
|
||||
from configs import (kbs_config,
|
||||
EMBEDDING_MODEL, DEFAULT_VS_TYPE,
|
||||
CHUNK_SIZE, OVERLAP_SIZE, ZH_TITLE_ENHANCE)
|
||||
EMBEDDING_MODEL, DEFAULT_VS_TYPE,
|
||||
CHUNK_SIZE, OVERLAP_SIZE, ZH_TITLE_ENHANCE)
|
||||
from server.utils import list_embed_models, list_online_embed_models
|
||||
import os
|
||||
import time
|
||||
|
||||
|
||||
# SENTENCE_SIZE = 100
|
||||
|
||||
cell_renderer = JsCode("""function(params) {if(params.value==true){return '✓'}else{return '×'}}""")
|
||||
|
||||
|
||||
@ -32,7 +29,7 @@ def config_aggrid(
|
||||
gb.configure_selection(
|
||||
selection_mode=selection_mode,
|
||||
use_checkbox=use_checkbox,
|
||||
# pre_selected_rows=st.session_state.get("selected_rows", [0]),
|
||||
pre_selected_rows=st.session_state.get("selected_rows", [0]),
|
||||
)
|
||||
gb.configure_pagination(
|
||||
enabled=True,
|
||||
@ -59,7 +56,8 @@ def knowledge_base_page(api: ApiRequest, is_lite: bool = None):
|
||||
try:
|
||||
kb_list = {x["kb_name"]: x for x in get_kb_details()}
|
||||
except Exception as e:
|
||||
st.error("获取知识库信息错误,请检查是否已按照 `README.md` 中 `4 知识库初始化与迁移` 步骤完成初始化或迁移,或是否为数据库连接错误。")
|
||||
st.error(
|
||||
"获取知识库信息错误,请检查是否已按照 `README.md` 中 `4 知识库初始化与迁移` 步骤完成初始化或迁移,或是否为数据库连接错误。")
|
||||
st.stop()
|
||||
kb_names = list(kb_list.keys())
|
||||
|
||||
@ -150,7 +148,8 @@ def knowledge_base_page(api: ApiRequest, is_lite: bool = None):
|
||||
[i for ls in LOADER_DICT.values() for i in ls],
|
||||
accept_multiple_files=True,
|
||||
)
|
||||
kb_info = st.text_area("请输入知识库介绍:", value=st.session_state["selected_kb_info"], max_chars=None, key=None,
|
||||
kb_info = st.text_area("请输入知识库介绍:", value=st.session_state["selected_kb_info"], max_chars=None,
|
||||
key=None,
|
||||
help=None, on_change=None, args=None, kwargs=None)
|
||||
|
||||
if kb_info != st.session_state["selected_kb_info"]:
|
||||
@ -200,8 +199,8 @@ def knowledge_base_page(api: ApiRequest, is_lite: bool = None):
|
||||
doc_details = doc_details[[
|
||||
"No", "file_name", "document_loader", "text_splitter", "docs_count", "in_folder", "in_db",
|
||||
]]
|
||||
# doc_details["in_folder"] = doc_details["in_folder"].replace(True, "✓").replace(False, "×")
|
||||
# doc_details["in_db"] = doc_details["in_db"].replace(True, "✓").replace(False, "×")
|
||||
doc_details["in_folder"] = doc_details["in_folder"].replace(True, "✓").replace(False, "×")
|
||||
doc_details["in_db"] = doc_details["in_db"].replace(True, "✓").replace(False, "×")
|
||||
gb = config_aggrid(
|
||||
doc_details,
|
||||
{
|
||||
@ -252,7 +251,8 @@ def knowledge_base_page(api: ApiRequest, is_lite: bool = None):
|
||||
st.write()
|
||||
# 将文件分词并加载到向量库中
|
||||
if cols[1].button(
|
||||
"重新添加至向量库" if selected_rows and (pd.DataFrame(selected_rows)["in_db"]).any() else "添加至向量库",
|
||||
"重新添加至向量库" if selected_rows and (
|
||||
pd.DataFrame(selected_rows)["in_db"]).any() else "添加至向量库",
|
||||
disabled=not file_exists(kb, selected_rows)[0],
|
||||
use_container_width=True,
|
||||
):
|
||||
@ -285,39 +285,39 @@ def knowledge_base_page(api: ApiRequest, is_lite: bool = None):
|
||||
|
||||
st.divider()
|
||||
|
||||
# cols = st.columns(3)
|
||||
cols = st.columns(3)
|
||||
|
||||
# if cols[0].button(
|
||||
# "依据源文件重建向量库",
|
||||
# # help="无需上传文件,通过其它方式将文档拷贝到对应知识库content目录下,点击本按钮即可重建知识库。",
|
||||
# use_container_width=True,
|
||||
# type="primary",
|
||||
# ):
|
||||
# with st.spinner("向量库重构中,请耐心等待,勿刷新或关闭页面。"):
|
||||
# empty = st.empty()
|
||||
# empty.progress(0.0, "")
|
||||
# for d in api.recreate_vector_store(kb,
|
||||
# chunk_size=chunk_size,
|
||||
# chunk_overlap=chunk_overlap,
|
||||
# zh_title_enhance=zh_title_enhance):
|
||||
# if msg := check_error_msg(d):
|
||||
# st.toast(msg)
|
||||
# else:
|
||||
# empty.progress(d["finished"] / d["total"], d["msg"])
|
||||
# st.rerun()
|
||||
if cols[0].button(
|
||||
"依据源文件重建向量库",
|
||||
help="无需上传文件,通过其它方式将文档拷贝到对应知识库content目录下,点击本按钮即可重建知识库。",
|
||||
use_container_width=True,
|
||||
type="primary",
|
||||
):
|
||||
with st.spinner("向量库重构中,请耐心等待,勿刷新或关闭页面。"):
|
||||
empty = st.empty()
|
||||
empty.progress(0.0, "")
|
||||
for d in api.recreate_vector_store(kb,
|
||||
chunk_size=chunk_size,
|
||||
chunk_overlap=chunk_overlap,
|
||||
zh_title_enhance=zh_title_enhance):
|
||||
if msg := check_error_msg(d):
|
||||
st.toast(msg)
|
||||
else:
|
||||
empty.progress(d["finished"] / d["total"], d["msg"])
|
||||
st.rerun()
|
||||
|
||||
# if cols[2].button(
|
||||
# "删除知识库",
|
||||
# use_container_width=True,
|
||||
# ):
|
||||
# ret = api.delete_knowledge_base(kb)
|
||||
# st.toast(ret.get("msg", " "))
|
||||
# time.sleep(1)
|
||||
# st.rerun()
|
||||
if cols[2].button(
|
||||
"删除知识库",
|
||||
use_container_width=True,
|
||||
):
|
||||
ret = api.delete_knowledge_base(kb)
|
||||
st.toast(ret.get("msg", " "))
|
||||
time.sleep(1)
|
||||
st.rerun()
|
||||
|
||||
# with st.sidebar:
|
||||
# keyword = st.text_input("查询关键字")
|
||||
# top_k = st.slider("匹配条数", 1, 100, 3)
|
||||
with st.sidebar:
|
||||
keyword = st.text_input("查询关键字")
|
||||
top_k = st.slider("匹配条数", 1, 100, 3)
|
||||
|
||||
st.write("文件内文档列表。双击进行修改,在删除列填入 Y 可删除对应行。")
|
||||
docs = []
|
||||
@ -325,11 +325,12 @@ def knowledge_base_page(api: ApiRequest, is_lite: bool = None):
|
||||
if selected_rows:
|
||||
file_name = selected_rows[0]["file_name"]
|
||||
docs = api.search_kb_docs(knowledge_base_name=selected_kb, file_name=file_name)
|
||||
data = [{"seq": i+1, "id": x["id"], "page_content": x["page_content"], "source": x["metadata"].get("source"),
|
||||
"type": x["type"],
|
||||
"metadata": json.dumps(x["metadata"], ensure_ascii=False),
|
||||
"to_del": "",
|
||||
} for i, x in enumerate(docs)]
|
||||
data = [
|
||||
{"seq": i + 1, "id": x["id"], "page_content": x["page_content"], "source": x["metadata"].get("source"),
|
||||
"type": x["type"],
|
||||
"metadata": json.dumps(x["metadata"], ensure_ascii=False),
|
||||
"to_del": "",
|
||||
} for i, x in enumerate(docs)]
|
||||
df = pd.DataFrame(data)
|
||||
|
||||
gb = GridOptionsBuilder.from_dataframe(df)
|
||||
@ -343,22 +344,24 @@ def knowledge_base_page(api: ApiRequest, is_lite: bool = None):
|
||||
edit_docs = AgGrid(df, gb.build())
|
||||
|
||||
if st.button("保存更改"):
|
||||
# origin_docs = {x["id"]: {"page_content": x["page_content"], "type": x["type"], "metadata": x["metadata"]} for x in docs}
|
||||
origin_docs = {
|
||||
x["id"]: {"page_content": x["page_content"], "type": x["type"], "metadata": x["metadata"]} for x in
|
||||
docs}
|
||||
changed_docs = []
|
||||
for index, row in edit_docs.data.iterrows():
|
||||
# origin_doc = origin_docs[row["id"]]
|
||||
# if row["page_content"] != origin_doc["page_content"]:
|
||||
if row["to_del"] not in ["Y", "y", 1]:
|
||||
changed_docs.append({
|
||||
"page_content": row["page_content"],
|
||||
"type": row["type"],
|
||||
"metadata": json.loads(row["metadata"]),
|
||||
})
|
||||
origin_doc = origin_docs[row["id"]]
|
||||
if row["page_content"] != origin_doc["page_content"]:
|
||||
if row["to_del"] not in ["Y", "y", 1]:
|
||||
changed_docs.append({
|
||||
"page_content": row["page_content"],
|
||||
"type": row["type"],
|
||||
"metadata": json.loads(row["metadata"]),
|
||||
})
|
||||
|
||||
if changed_docs:
|
||||
if api.update_kb_docs(knowledge_base_name=selected_kb,
|
||||
file_names=[file_name],
|
||||
docs={file_name: changed_docs}):
|
||||
file_names=[file_name],
|
||||
docs={file_name: changed_docs}):
|
||||
st.toast("更新文档成功")
|
||||
else:
|
||||
st.toast("更新文档失败")
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user